【題目】如圖,DE是AB的垂直平分線.
(1)已知AC=5cm,△ADC的周長為17cm,則BC的長__________
(2)若AD平分∠BAC,AD=AC,則∠C= __________
【答案】12cm 72°
【解析】
(1)要求BC的大小,只要求出CD+BD,由線段的垂直平分線的性質(zhì)知BD=AD,結(jié)合三角形的周長可得答案;
(2)設(shè)∠BAD=x.由垂直平分線的性質(zhì)得到AD=BD,由等邊對等角得到∠B=∠BAD=x,由三角形外角的性質(zhì)得到∠ADC=∠B+∠BAD= 2x.由等腰三角形的性質(zhì)得到∠C=∠ADC=2x.由角平分線的性質(zhì)得到∠CAD=∠BAD=x.在△ADC中,由三角形內(nèi)角和定理列方程得到x的值,即可得到結(jié)論.
(1)∵DE是邊AB的垂直平分線,∴AD=BD,∴△ADC的周長=AD+DC+AC=BD+DC+AC=BC+AC=17cm.
又∵AC=5cm,∴BC=12cm.
(2)設(shè)∠BAD=x.
∵DE是邊AB的垂直平分線,∴AD=BD,∴∠B=∠BAD=x,∴∠ADC=∠B+∠BAD=x+x=2x.
∵AD=AC,∴∠C=∠ADC=2x.
∵AD平分∠BAC,∴∠CAD=∠BAD=x.在△ADC中,x+2x+2x=180°,解得:x=36°,∴∠C=2x=72°.
故答案為:12cm,72°.
科目:初中數(shù)學 來源: 題型:
【題目】科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總?cè)藬?shù).圖中曲線對應的函數(shù)解析式為y= ,10:00之后來的游客較少可忽略不計.
(1)請寫出圖中曲線對應的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的周長是16,OB、OC分別平分∠ABC和∠ACB,OD⊥BC于D且OD=2,△ABC的面積是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是 的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為2 時,則陰影部分的面積為( )
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com