【題目】如圖,A(﹣1,0),B(4,0),C(0,3)三點(diǎn)在拋物線y=ax2+bx+c上,D為直線BC上方拋物線上一動(dòng)點(diǎn),E在CB上,∠DEC=90°
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,求線段DE長(zhǎng)度的最大值;
(3)如圖2,F為AB的中點(diǎn),連接CF,CD,當(dāng)△CDE中有一個(gè)角與∠CFO相等時(shí),求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=;(2);(3)或.
【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得DM,根據(jù)相似三角形的判定與性質(zhì),可得DE的長(zhǎng),根據(jù)二次函數(shù)的性質(zhì),可得答案;
(3)根據(jù)正切函數(shù),可得∠CFO,根據(jù)相似三角形的性質(zhì),可得GH,BH,根據(jù)待定系數(shù)法,可得CG的解析式,根據(jù)解方程組,可得答案.
解:(1)由題意,得,
解得,
拋物線的函數(shù)表達(dá)式為y=﹣x2+x+3;
(2)設(shè)直線BC的解析是為y=kx+b,,
解得,
∴y=﹣x+3,
設(shè)D(a,﹣a2+a+3),(0<a<4),過(guò)點(diǎn)D作DM⊥x軸交BC于M點(diǎn),
如圖1,
M(a,﹣a+3),
DM=(﹣a2+a+3)﹣(﹣a+3)=﹣a2+3a,
∵∠DME=∠OCB,∠DEM=∠BOC,
∴△DEM∽△BOC,
∴,
∵OB=4,OC=3,
∴BC=5,
∴DE=DM
∴DE=﹣a2+a=﹣(a﹣2)2+,
當(dāng)a=2時(shí),DE取最大值,最大值是,
(3)假設(shè)存在這樣的點(diǎn)D,使得△CDE中有一個(gè)角與∠CFO相等,
∵點(diǎn)F為AB的中點(diǎn),
∴OF=,tan∠CFO==2,
過(guò)點(diǎn)B作BG⊥BC,交CD的延長(zhǎng)線于G點(diǎn),過(guò)點(diǎn)G作GH⊥x軸,垂足為H,
如圖2
,
①若∠DCE=∠CFO,
∴tan∠DCE==2,
∴BG=10,
∵△GBH∽BCO,
∴,
∴GH=8,BH=6,
∴G(10,8),
設(shè)直線CG的解析式為y=kx+b,
∴,
解得,
∴直線CG的解析式為y=x+3,
∴,
解得x=,或x=0(舍).
②若∠CDE=∠CFO,
同理可得BG=,GH=2,BH=,
∴G(,2),
同理可得,直線CG的解析是為y=﹣x+3,
∴,
解得x=或x=0(舍),
綜上所述,存在點(diǎn)D,使得△CDE中有一個(gè)角與∠CFO相等,點(diǎn)D的橫坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),作直線,將直線下方的二次函數(shù)圖象沿直線向上翻折,與其它剩余部分組成一個(gè)組合圖象,若線段與組合圖象有兩個(gè)交點(diǎn),則的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,經(jīng)過(guò)正方形網(wǎng)格中的格點(diǎn)、、、,請(qǐng)你僅用網(wǎng)格中的格點(diǎn)及無(wú)刻度的直尺分別在圖1、圖2、圖3中畫(huà)出一個(gè)滿足下列兩個(gè)條件的:
(1)頂點(diǎn)在上且不與點(diǎn)、、、重合;
(2)在圖1、圖2、圖3中的正切值分別為1、、2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題:
(1)則樣本容量是 ,并補(bǔ)全直方圖;
(2)該年級(jí)共有學(xué)生500人,請(qǐng)估計(jì)全年級(jí)在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫(xiě)報(bào)告,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.
發(fā)言次數(shù)n | |
A | 0≤n<3 |
B | 3≤n<6 |
C | 6≤n<9 |
D | 9≤n<12 |
E | 12≤n<15 |
F | 15≤n<18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,AD=CD,點(diǎn)E在AD上,DE=BD,M、N分別是AB、CE的中點(diǎn).
(1)求證:△ADB≌△CDE;
(2)求∠MDN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)為P的拋物線C1的解析式為y=a(x-3)2(a≠0),且經(jīng)過(guò)點(diǎn)(0,1).
(1)求a的值及拋物線C1的解析式;
(2)如圖,將拋物線C1向下平移h(h>0)個(gè)單位得到拋物線C2,過(guò)點(diǎn)K(0,m2)(m>0)作直線l平行于x軸,與兩拋物線從左到右分別相交于A,B,C,D四點(diǎn),且A,C兩點(diǎn)關(guān)于y軸對(duì)稱.
①點(diǎn)G在拋物線C1上,當(dāng)m為何值時(shí),四邊形APCG為平行四邊形?
②若拋物線C1的對(duì)稱軸與直線l交于點(diǎn)E,與拋物線C2交于點(diǎn)F.試探究:在K點(diǎn)運(yùn)動(dòng)過(guò)程中,的值是否改變?若會(huì),請(qǐng)說(shuō)明理由;若不會(huì),請(qǐng)求出這個(gè)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問(wèn)題:
(1)a= ,b= ,c= ;
(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為 度;
(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫(huà)樹(shù)狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛(ài)看課外書(shū)、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì).現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問(wèn)卷調(diào)查的方法收集數(shù)據(jù)(參與問(wèn)卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng)).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.由圖中提供的信息,解答下列問(wèn)題:
(1)求n的值;
(2)若該校學(xué)生共有1200人,試估計(jì)該校喜愛(ài)看電視的學(xué)生人數(shù);
(3)若調(diào)查到喜愛(ài)體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①如果a2>b2,那么a>b;②的算術(shù)平方根是4;③過(guò)一點(diǎn)有且只有一條直線與已知直線平行;④關(guān)于x的方程沒(méi)有實(shí)數(shù)根,那么m的取值范圍是m>1且m≠0;正確的有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com