精英家教網 > 初中數學 > 題目詳情

【題目】某市正在舉行文化藝術節(jié)活動,一商店抓住商機,決定購進甲,乙兩種藝術節(jié)紀念品.若購進甲種紀念品4件,乙種紀念品3件,需要550元,若購進甲種紀念品5件,乙種紀念品6件,需要800元.

(1)求購進甲、乙兩種紀念品每件各需多少元?

(2)若該商店決定購進這兩種紀念品共80件,其中甲種紀念品的數量不少于60件.考慮到資金周轉,用于購買這80件紀念品的資金不能超過7100元,那么該商店共有幾種進貨方案7

(3)若銷售每件甲種紀含晶可獲利潤20元,每件乙種紀念品可獲利潤30元.在(2)中的各種進貨方案中,若全部銷售完,哪一種方案獲利最大?最大利利潤多少元?

【答案】(1)購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.(2)有三種進貨方案.方案一:甲種紀念品60件,乙種紀念品20件;方案二:甲種紀念品61件,乙種紀念品19件;方案三:甲種紀念品62件,乙種紀念品18件.(3)若全部銷售完,方案一獲利最大,最大利潤是1800元.

【解析】分析:(1)設購進甲種紀念品每件價格為x元,乙種紀念幣每件價格為y元,根據題意得出關于xy的二元一次方程組,解方程組即可得出結論;

(2)設購進甲種紀念品a件,根據題意列出關于x的一元一次不等式,解不等式得出a的取值范圍,即可得出結論;

(3)找出總利潤關于購買甲種紀念品a件的函數關系式,由函數的增減性確定總利潤取最值時a的值,從而得出結論.

詳解:(1)設購進甲種紀念品每件需x元,購進乙種紀念品每件需y元.

由題意得:

解得:

答:購進甲種紀念品每件需100元,購進乙種紀念品每件需50元.

(2)設購進甲種紀念品a(a≥60)件,則購進乙種紀念品(80﹣a)件.由題意得:

100a+50(80﹣a)≤7100

解得a≤62

a≥60

所以a可取60、61、62.

即有三種進貨方案.

方案一:甲種紀念品60件,乙種紀念品20件;

方案二:甲種紀念品61件,乙種紀念品19件;

方案三:甲種紀念品62件,乙種紀念品18件.

(3)設利潤為W,則W=20a+30(80﹣a)=﹣10a+2400

所以Wa的一次函數,﹣10<0,Wa的增大而減。

所以當a最小時,W最大.此時W=﹣10×60+2400=1800

答:若全部銷售完,方案一獲利最大,最大利潤是1800元.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】小王家新買的一套住房的建筑平面圖如圖所示(單位:米).

(1)這套住房的建筑總面積是多少平方米?(用含a,b,c的式子表示)

(2)若a=9,b=4,c=7,試求出小王家這套住房的具體面積.

(3)地面裝修要鋪設瓷磚,公司報價是:客廳地面每平方米200元,臥室地面每平方米150元,廚房地面每平方米120元,衛(wèi)生間地面每平方米100元.在(2)的條件下,小王一共要花多少錢?

(4)這套住房的售價為每平方米4500元,購房時首付款為房價的40%,余款向銀行申請貸款,在(2)的條件下,小宇家購買這套住房時向銀行申請貸款的金額是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=mm是大于0的常數),BC=8E為線段BC上的動點(不與B、C重合).連結DE,作EFDEEF與射線BA交于點F,設CE=xBF=y

1)求y關于x的函數關系式;

2)若m=8,求x為何值時,y的值最大,最大值是多少?

3)若,要使DEF為等腰三角形,m的值應為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C、D是線段AB上兩點,已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點,且AB=12cm,

(1)求線段CD的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,數軸上的點A、B、C分別表示數﹣3、﹣1、2.

(1)A、B兩點的距離AB=________,A、C兩點的距離AC=________ ;

(2)通過觀察,可以發(fā)現(xiàn)數軸上兩點間距離與這兩點表示的數的差的絕對值有一定關系,按照此關系,若點E表示的數為x,則AE=________ ;

(3)利用數軸直接寫出|x﹣1|+|x+3|的最小值=________ .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在我國沿海有一艘不明國籍的輪船進入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13nmileAB兩個基地前去攔截,六分鐘后同時到達C地將其攔截.已知甲巡邏艇每小時航行120nmile,乙巡邏艇每小時航行50nmile,航向為北偏西40°,求甲巡邏艇的航向.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】記:P1=﹣2,P2=(﹣2)×(﹣2),P3=(﹣2)×(﹣2)×(﹣2),…,

1)計算P7÷P8的值;

2)計算2P2019+P2020的值;

3)猜想2PnPn+1的關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網格線運動.它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負.如果從AB記為:A→B(+1,+4),從BA記為:B→A(-1,-4),其中第一個數表示左右方向,第二個數表示上下方向.

(1)圖中A→C( ),B→C( , ),C→ (+1, );

(2)若這只甲蟲從A處去甲蟲P處的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請在圖中標出P的位置;

(3)若這只甲蟲的行走路線為A→B→C→D,請計算該甲蟲走過的路程;

(4)若圖中另有兩個格點M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應記為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為測山高,在點A處測得山頂D的仰角為30°,從點A向山的方向前進140米到達點B,在B處測得山頂D的仰角為60°(如圖).

1)在所給的圖中尺規(guī)作圖:過點DDC⊥AB,交AB的延長線于點C(保留作圖痕跡);

2)山高DC是多少(結果保留根號形式)?

查看答案和解析>>

同步練習冊答案