【題目】如圖1,在等邊中,,動點從點出發(fā)以的速度沿勻速運動,動點同時從點出發(fā)以同樣的速度沿的延長線方向勻速運動,當點到達點時,點、同時停止運動.設運動時間為,過點作于,交邊于,線段的中點為,連接.
(1)當為何值時,與相似;
(2)在點、運動過程中,點、也隨之運動,線段的長度是否會發(fā)生變化?若發(fā)生變化,請說明理由,若不發(fā)生變化,求的長;
(3)如圖2,將沿直線翻折,得,連接,當為何值時,的值最小?并求出最小值.
科目:初中數學 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應地任務:
萊昂哈德·歐拉(Leonhard Euler)是瑞士數學家,在數學上經常見到以他的名字命名的重要常數,公式和定理,下面是歐拉發(fā)現的一個定理:在△ABC中,R和r分別為外接圓和內切圓的半徑,O和I分別為其外心和內心,則.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內切圓,⊙I與AB相切分于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BE,BD,BI,IF,
∵DE是⊙O的直徑,∴∠DBE=90°,
∵⊙I與AB相切于點F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB,
∴,∴②,
任務:(1)觀察發(fā)現:, (用含R,d的代數式表示);
(2)請判斷BD和ID的數量關系,并說明理由;
(3)請觀察式子①和式子②,并利用任務(1),(2)的結論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應用:若△ABC的外接圓的半徑為5cm,內切圓的半徑為2cm,則△ABC的外心與內心之間的距離為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=x+4的圖象與反比例函數y=(k為常數且k≠0)的圖象交于A(﹣1,3),B(b,1)兩點.
(1)求反比例函數的表達式;
(2)在x軸上找一點P,使PA+PB的值最小,并求滿足條件的點P的坐標;
(3)連接OA,OB,求△OAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示的四枚郵票圖片形狀完全相同,分別是我國代科學家祖沖之、李時珍、張衡、僧一行.把四張圖片混合在一起.
(1)若隨機摸取一張圖片,則摸到“祖沖之”圖片的概率是__________;
(2)若隨機摸取一張圖片然后放回,再隨機摸取一張圖片,利用列表或樹狀圖求兩次至少有一次摸到“祖沖之”圖片的概率;
(3)小東、小西、小南、小北四位同學依次摸取圖片,若小東摸到“祖沖之”圖片,則剩下三人中( )
A.小西摸到“李時珍”圖片的概率大 B.小南摸到“李時珍”圖片的概率大
C.小北摸到“李時珍”圖片的概率大 D.三人摸到“李時珍”圖片的概率一樣大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:DE平分∠BEP;
(3)若⊙O的半徑為10,CF=2EF,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數與反比例函數的解析式;
(2)根據所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形中,,,是邊上一點,連接,將矩形沿折疊,頂點恰好落在邊上點處,延長交的延長線于點.
(1)求線段的長;
(2)如圖2,,分別是線段,上的動點(與端點不重合),且.
①求證:∽;
②是否存在這樣的點,使是等腰三角形?若存在,請求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的頂點B在x軸上,點A、點C在雙曲線y=(k>0,x>0)上.若直線BC的解析式為y=x﹣2,則k的值為( )
A.24B.12C.6D.4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com