(2000•陜西)如圖,A、B、C、D是圓上四點,AB、DC的延長線交于點E,、分別為120°和40°,則∠E等于( )

A.35°
B.40°
C.60°
D.30°
【答案】分析:連接BD、AC,結(jié)合題意,分別為120°和40°,可得∠ACD和∠BDC的度數(shù),再利用同弧所對的圓周角相等,可得∠D=∠A.在△ACE中,利用外角定理即可得出∠E的度數(shù).
解答:解:連接BD、AC,根據(jù)題意可得,
∠ACD=60°,∠D=∠A=20°,
在△AEC中,∠ACD=∠A+∠E,
即可得出∠E=40°.
故選B.
點評:本題主要考查了圓周角定理的應(yīng)用和三角形的外角定理,屬于常規(guī)考試所用題目,具有一定的靈活性,要求學(xué)生靈活運用所學(xué)知識,在理解題目要求的情況下快速的完成題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年陜西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•陜西)如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點,與y軸交于C、D兩點,過C點作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點恰為⊙A與x軸的兩個交點,且拋物線的頂點在直線上y=x+2上,求此拋物線的解析式;
(3)試判斷點C是否在拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•陜西)如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點,與y軸交于C、D兩點,過C點作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點恰為⊙A與x軸的兩個交點,且拋物線的頂點在直線上y=x+2上,求此拋物線的解析式;
(3)試判斷點C是否在拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2000•陜西)如圖,要測量小山上電視塔BC的高度,從山腳下A點測得AC=820m,塔頂B的仰角α=30°,山坡的傾角β=18°,求電視塔的高(精確到1m).
(參考數(shù)據(jù):sin30°=0.50,cos30°=0.87,tan30°=0.58,cot30°=1.73,sin18°=0.31,cos18°=0.95,tan18°=0.32,cot18°=3.08)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(2000•陜西)如圖,已知弦AB等于半徑,連接OB并延長使BC=OB.
(1)求證:AC是⊙O的切線;
(2)請你在⊙O上選取一點D,使得AD=AC.(自己完成作圖,并給出證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《四邊形》(02)(解析版) 題型:解答題

(2000•陜西)如圖,在矩形ABCD中,EF是BD的垂直平分線,已知BD=20,EF=15,求矩形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊答案