【題目】為了解本校七年級同學(xué)在雙休日參加體育鍛煉的時間,課題小組進(jìn)行了問卷調(diào)查(問卷調(diào)查表如下圖所示),并用調(diào)查結(jié)果繪制了圖1、圖2兩幅統(tǒng)計圖(均不完整),請根據(jù)統(tǒng)計圖解答以下問題.



(1)本次接受問卷調(diào)查的同學(xué)有多少人?補(bǔ)全條形統(tǒng)計圖.
(2)本校有七年級同學(xué)800人,估計雙休日參加體育鍛煉時間在3小時以內(nèi)(不含3小時)的人數(shù).

【答案】
(1)

解:本次接受問卷調(diào)查的同學(xué)有40÷25%=160(人);

選D的同學(xué)有160-20-40-60-10=30(人),補(bǔ)全條形統(tǒng)計圖如下.


(2)

解: (人).


【解析】(1)從條形統(tǒng)計圖中,可以得到選B的人數(shù)是40,從扇形統(tǒng)計圖中可得選B的人數(shù)占25%,即可求得;需要求出選D的人數(shù),再補(bǔ)條形統(tǒng)計圖.(2)鍛煉時間在3小時以內(nèi)的,即包括選A、B、C的人數(shù);要求出選A、B、C占調(diào)查人數(shù)的百分比,再乘以七年級總?cè)藬?shù)即可求出.
【考點精析】掌握扇形統(tǒng)計圖和條形統(tǒng)計圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠D=90°,AC平分∠DAB,且點C在以AB為直徑的⊙O上.
(1)求證:CD是⊙O的切線;
(2)點E是⊙O上一點,連接BE,CE.若∠BCE=42°,cos∠DAC= ,AC=m,寫出求線段CE長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCDEF中,已有條件AB=DE,還需要添加兩個條件才能使ABC≌△DEF.不能添加的一組條件是(

A. B=E,BC=EF B. A=D,BC=EF

C. A=D,∠B=E D. BC=EF,AC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△A1B1C1,△A2B2C2的周長相等,現(xiàn)有兩個判斷:

A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;

∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2

對于上述的兩個判斷,下列說法正確的是(  )

A. 正確,錯誤 B. 錯誤,正確 C. ①,②都錯誤 D. ①,②都正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB的角平分線上一點,過PPC//OAOB于點C.若∠AOB=30°,OC=4cm,則點POA的距離PD等于___________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,AB=AC,D為直線BC上一點,E為直線AC上一點,AD=AE,設(shè)∠BAD=α,∠CDE=β.

(1)如圖,若點D在線段BC上,點E在線段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之間的關(guān)系式.
(2)是否存在不同于以上②中的α,β之間的關(guān)系式?若存在,請求出這個關(guān)系式(求出一個即可);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團(tuán)委會開展書法、誦讀、演講、征文四個項目(每人只參加一個項目)的比賽,初三(1)班全體同學(xué)都參加了比賽,為了解比賽的具體情況,小明收集整理數(shù)據(jù)后,繪制了以下不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖,根據(jù)圖表中的信息解答下列各題:
(1)初三(1)班的總?cè)藬?shù)為 , 扇形統(tǒng)計圖中“征文”部分的圓心角度數(shù)為度;
(2)請把折線統(tǒng)計圖補(bǔ)充完整;
(3)平平和安安兩個同學(xué)參加了比賽,請用“列表法”或“畫樹狀圖法”,求出他們參加的比賽項目相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(感知)如圖①,ABCD,點E在直線ABCD之間,連結(jié)AE、BE,試說明∠BEE+DCE=AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數(shù)學(xué)式):

解:如圖①,過點EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)當(dāng)點E在如圖②的位置時,其他條件不變,試說明∠AEC+FGC+DCE=360°;

(應(yīng)用)點E、F、G在直線ABCD之間,連結(jié)AE、EF、FGCG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

同步練習(xí)冊答案