一男生推鉛球,鉛球在運動過程中,高度不斷發(fā)生變化.已知當(dāng)鉛球飛出的水平距離為x時,其高度為(-
1
12
x2+
2
3
x+
5
3
)
米,則這位同學(xué)推鉛球的成績?yōu)椋ā 。?table style="margin-left:0px;width:650px;">A.9米B.10米C.11米D.12米

設(shè)鉛球在運動過程中的高度為y,
根據(jù)題意得:y=-
1
12
x2+
2
3
x+
5
3
,
令y=0得:-
1
12
x2+
2
3
x+
5
3
=0,
解得:x1=10,x2=-2,
又∵x>0,解得:x=10,
則這位同學(xué)推鉛球的成績?yōu)?0米.
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=-
3
x2-2
3
(a-1)x-
3
(a2-2a)與x軸交于點A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B兩點的坐標(biāo)(用a表示);
(2)設(shè)拋物線的頂點為C,求△ABC的面積;
(3)若a是整數(shù),P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,求拋物線的解析式及線段PQ的長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-x2-2x+a(a>0)與y軸相交于點A,頂點為M.直線y=
1
2
x+
1
2
a
與x軸相交于B點,與直線AM相交于N點;直線AM與x軸相交于C點
(1)求M的坐標(biāo)與MA的解析式(用字母a表示);
(2)如圖,將△NBC沿x軸翻折,若N點的對應(yīng)點N′恰好落在拋物線上,求a的值;
(3)在拋物線y=-x2-2x+a(a>0)上是否存在一點P,使得以P、B、C、N為頂點的四邊形是平行四邊形?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在平面直角坐標(biāo)系中,拋物線y=-
1
4
x2+bx+3
交x軸于A、B兩點,交y軸于點C,且對稱軸為x=-2,點P(0,t)是y軸上的一個動點.

(1)求拋物線的解析式及頂點D的坐標(biāo).
(2)如圖1,當(dāng)0≤t≤4時,設(shè)△PAD的面積為S,求出S與t之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時t的值.
(3)如圖2,當(dāng)點P運動到使∠PDA=90°時,Rt△ADP與Rt△AOC是否相似?若相似,求出點P的坐標(biāo);若不相似,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某摩托車生產(chǎn)企業(yè),上年度生產(chǎn)摩托車的投入成本為1萬元/輛,出廠價為1.2萬元/輛,年銷售量為1000輛.本年度為適應(yīng)市場需求,計劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛投入成本增加的比例為x(0<x<1),則出廠價相應(yīng)提高的比例為0.75x,同時預(yù)計年銷售量增加的比例為0.6x.
(1)求本年度預(yù)計的年利潤y與投入成本增加的比例x的關(guān)系式;
(2)為使本年度的利潤比上一年有所增加,投入成本增加的比例應(yīng)在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個中學(xué)生推鉛球,鉛球在點A處出手,在點B處落地,它的運行路線是一條拋物線,在平面直角坐標(biāo)系中,這條拋物線的解析式為:y=-
1
12
x2+
2
3
x+
5
3

(1)請用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出鉛球在運行過程中到達(dá)最高點時離地面的距離和這個學(xué)生推鉛球的成績.(單位:米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
18
x2-
4
9
x-10與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DEOA,交CA于點E,射線QE交x軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點的坐標(biāo)和拋物線的頂點的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)0<t<
9
2
時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,以x軸上一點P(1,0)為圓心的圓與x軸、y軸分別交于A、B、C、D四點,點C的坐標(biāo)為(0,
3
).
(1)直接寫出A、B、D三點坐標(biāo);
(2)若拋物線y=x2+bx+c過A、D兩點,求這條拋物線的解析式,并判斷點B是否在所求的拋物線上,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=x2+2mx+m2-4的圖象與x軸的負(fù)半軸相交于A、B兩點(點A在左側(cè)),一次函數(shù)y=2x+b的圖象經(jīng)過點B,與y軸相交于點C.
(1)求A、B兩點的坐標(biāo)(可用m的代數(shù)式表示);
(2)如果?ABCD的頂點D在上述二次函數(shù)的圖象上,求m的值.

查看答案和解析>>

同步練習(xí)冊答案