【題目】如圖1,等腰直角中,,過點(diǎn),的圓交于點(diǎn),交于點(diǎn),連結(jié).

(1),,分別求,的長

(2)如圖2,連結(jié),若,的面積為10,求

(3)如圖3,在圓上取點(diǎn)使得(點(diǎn)與點(diǎn)不重合),連結(jié),且點(diǎn)的內(nèi)心

①請你畫出,說明畫圖過程并求的度數(shù).

②設(shè),,若,求的內(nèi)切圓半徑長.

【答案】(1)DE=CE=;(2);(3)①畫圖見解析;∠CDF=135°;②的內(nèi)切圓半徑為2

【解析】

1)由A、C、E、D四點(diǎn)共圓可得∠ADE90°,然后求出DE、BEBC,再根據(jù)CE=BC-BE即可得出答案;

2)過點(diǎn)DDHCAH,過點(diǎn)DDGCBG G,設(shè)DG=x,根據(jù)45°等腰直角三角形性質(zhì)可得DG=EG=BG=x,根據(jù)△ACD面積列出關(guān)于x的式子求出x值,再據(jù)此計算tanBCD;

3)①過點(diǎn)的延長線于點(diǎn),根據(jù)∠PFD=∠CFD,∠PCD=∠BCD,∠CPF90°即可求出∠CDF的度數(shù);②過點(diǎn)DDGCBG,則DG為△CPF內(nèi)切圓半徑,先求出△CDE∽△DBF,根據(jù)相似三角形性質(zhì)可得,然后求出BDDE,即可得出△CPF的內(nèi)切圓半徑長.

解:(1),

,

∵四邊形內(nèi)接于圓,

,

,

,

(2)過點(diǎn),過點(diǎn) ,設(shè)

,,

, ,

的面積為10

,

解得(舍去)

(3)①∵,點(diǎn)的內(nèi)心,

∴如圖,過點(diǎn)的延長線于點(diǎn),

即為所求的三角形.

∵∠PFD=∠CFD,∠PCD=∠BCD,∠CPF90°

=

②過點(diǎn),則內(nèi)切圓半徑

,,

又∵

,

,即

,

的內(nèi)切圓半徑為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在趣味運(yùn)動會定點(diǎn)投籃項(xiàng)目中,我校七年級八個班的投籃成績單位:個分別為:24,20,19,20,2223,20則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)Px0,y0)到直線Ax+By+C=0A2+B2≠0)的距離公式為:d=

例如,求點(diǎn)P1,3)到直線4x+3y3=0的距離.

解:由直線4x+3y3=0知:A=4,B=3,C=3

所以P1,3)到直線4x+3y3=0的距離為:d==2

根據(jù)以上材料,解決下列問題:

1)求點(diǎn)P11,-1)到直線3x4y5=0的距離.

2)已知:⊙C是以點(diǎn)C21)為圓心,1為半徑的圓,⊙C與直線y=x+b相切,求實(shí)數(shù)b的值;

3)如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請求出ABP面積的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“走進(jìn)中國數(shù)學(xué)史”為主題的知識競賽活動,八、九年級各有200名學(xué)生參加競賽,為了解這兩個年級參加競賽學(xué)生的成績情況,從中各隨機(jī)抽取20名學(xué)生的成績,數(shù)據(jù)如下:

八年級

91

89

77

86

71

九年級

84

93

66

69

76

51

97

93

72

91

87

77

82

85

88

81

92

85

85

95

90

88

67

88

91

88

88

90

64

91

96

68

97

99

88

整理上面數(shù)據(jù),得到如下統(tǒng)計表:

成績

人數(shù)

年級

八年級

1

1

3

7

8

九年級

0

4

2

8

6

樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

統(tǒng)計表

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級

83.85

88

91

127.03

九年級

83.95

87.5

99.45

根據(jù)以上信息,回答下列問題:

1)寫出上表中眾數(shù)的值.

2)試估計八、九年級這次選拔成績80分以上的人數(shù)和.

3)你認(rèn)為哪個年級學(xué)生的競賽成績較好?說明你的理由.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的港珠澳大橋是目前橋梁設(shè)計中廣泛采用的斜拉橋,它用粗大的鋼索將橋面拉住,為檢測鋼索的抗拉強(qiáng)度,橋梁建設(shè)方從甲、乙兩家生產(chǎn)鋼索的廠方各隨機(jī)選取5根鋼索進(jìn)行抗拉強(qiáng)度的檢測,數(shù)據(jù)統(tǒng)計如下(單位:百噸)

甲、乙兩廠鋼索抗拉強(qiáng)度檢測統(tǒng)計表

鋼索

1

2

3

4

5

平均數(shù)

中位數(shù)

方差

甲廠

10

11

9

10

12

10.4

10

1.04

乙廠

10

8

12

7

13

a

b

c

1)求乙廠5根鋼索抗拉強(qiáng)度的平均數(shù)a(百噸)、中位數(shù)b(百噸)和方差c(平方百噸).

2)橋梁建設(shè)方?jīng)Q定從抗拉強(qiáng)度的總體水平和穩(wěn)定性來決定鋼索的質(zhì)量,問哪一家的鋼索質(zhì)量更優(yōu)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O上有定點(diǎn)C和動點(diǎn)P,位于直徑AB的異側(cè),過點(diǎn)CCP的垂線,與PB的延長線交于點(diǎn)Q,已知:⊙O半徑為,則CQ的最大值是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物線yax2+bx+c的對稱軸為直線x1,且過點(diǎn)(3,0),下列結(jié)論:abc0ab+c0;③2a+b0;b24ac0;正確的有( 。﹤.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D在弧BC上,BD、AC的延長線交于點(diǎn)K,連接CD

1)求證:∠AKB﹣∠BCD45°

2)如圖2,若DCDB時,求證:BC2CK;

3)在(2)的條件下,連接BCAD于點(diǎn)E,過點(diǎn)CCFAD于點(diǎn)F,延長CFAB于點(diǎn)G,連接GE,若GE5,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案