【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象在第一象限交于點A,將線段OA沿x軸向右平移3個單位長度得到線段O'A',其中點A與點A'對應(yīng),若O'A'的中點D恰好也在該反比例函數(shù)圖象上,則k的值為_____.
【答案】4
【解析】
作DE∥x軸交OA于E,如圖,先利用平移的性質(zhì)得到OO′=3,OA=O′A′,再證明四邊形OO′DE為平行四邊形得到OE=O′D,接著判定OE= OA,設(shè)E(t,t),則A(2t,2t),D(t+3,t),根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征k=2t2t=t(t+3),然后先求出t,從而得到k的值.
解:作DE∥x軸交OA于E,如圖,
∵線段OA沿x軸向右平移3個單位長度得到線段O'A',
∴OO′=3,OA=O′A′,
∵OA∥O′A′,
∴四邊形OO′DE為平行四邊形,
∴OE=O′D,
∵點D為O'A'的中點,
∴O′D=O′A′,
∴OE=OA,
設(shè)E(t,t),則A(2t,2t),D(t+3,t),
∵A(2t,2t),D(t+3,t)在反比例函數(shù)y=的圖象上,
∴k=2t2t=t(t+3),解得t=1,k=4.
故答案為4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市少年宮為小學(xué)生開設(shè)了繪畫、音樂、舞蹈和跆拳道四類興趣班,為了解學(xué)生對這四類興趣班的喜愛情況,對學(xué)生進行了隨機問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計表
最受歡迎興趣班調(diào)查問卷 | 統(tǒng)計表 | |||||
選項 | 興趣班 | 請選擇 | 興趣班 | 頻數(shù) | 頻率 | |
A | 繪畫 | A | 0.35 | |||
B | 音樂 | B | 18 | 0.30 | ||
C | 舞蹈 | C | 15 | |||
D | 跆拳道 | D | 6 | |||
你好!請選擇一個(只能選一個)你最喜歡的興趣班,在其后空格內(nèi)打“√”,謝謝你的合作. | 1 | |||||
請你根據(jù)統(tǒng)計表中提供的信息回答下列問題:
(1)統(tǒng)計表中的 , ;
(2)根據(jù)調(diào)查結(jié)果,請你估計該市2000名小學(xué)生中最喜歡“繪畫”興趣的人數(shù);
(3)王姝和李要選擇參加興趣班,若他們每人從A、B、C、D四類興趣班中隨機選取一類,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一類的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明站在江邊某瞭望臺DE的頂端D處,測得江面上的漁船A的俯角為40°.若瞭望臺DE垂直于江面,它的高度為3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米.
(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)
(1)求瞭望臺DE的頂端D到江面AB的距離;
(2)求漁船A到迎水坡BC的底端B的距離.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 相交于點 O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸負半軸交于點A(-1,0),與y軸正半軸交與點B,頂點為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B.
(1) 求一次函數(shù)解析式;
(2)求頂點P的坐標(biāo);
(3)平移直線AB使其過點P,如果點M在平移后的直線上,且,求點M坐標(biāo);
(4)設(shè)拋物線的對稱軸交x軸與點E,聯(lián)結(jié)AP交y軸與點D,若點Q、N分別為兩線段PE、PD上的動點,聯(lián)結(jié)QD、QN,請直接寫出QD+QN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 (1)問題感知 如圖1,在△ABC中,∠C=90°,且AC=BC,點P是邊AC的中點,連接BP,將線段PB繞點P順時針旋轉(zhuǎn)90°到線段PD.連接AD.過點P作PE∥AB交BC于點E,則圖中與△BEP全等的三角形是 ,∠BAD= °;
(2)問題拓展 如圖2,在△ABC中,AC=BC=AB,點P是CA延長線上一點,連接BP,將線段PB繞點P順時針旋轉(zhuǎn)到線段PD,使得∠BPD=∠C,連接AD,則線段CP與AD之間存在的數(shù)量關(guān)系為CP=AD,請給予證明;
(3)問題解決 如圖3,在△ABC中,AC=BC=AB=2,點P在直線AC上,且∠APB=30°,將線段PB繞點P順時針旋轉(zhuǎn)60°到線段PD,連接AD,請直接寫出△ADP的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個邊長分別為和的正方形如圖放置(圖1),其未疊合部分(陰影)面積為;若再在圖1中大正方形的右下角擺放一個邊長為的小正方形(如圖2),兩個小正方形疊合部分(陰影)面積為.
(1)用含、的代數(shù)式分別表示、;
(2)若,,求的值;
(3)當(dāng)時,求出圖3中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=32°,以A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,再分別以M,N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于點D,則下列說法:
①AD是∠BAC的平分線;
②CD是△ADC的高;
③點D在AB的垂直平分線上;
④∠ADC=61°.
其中正確的有( ).
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校初二學(xué)生每周上網(wǎng)的時間,兩位學(xué)生進行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時間;小杰從全校400名初二學(xué)生中隨機抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示:
時間段 (小時/周) | 小麗抽樣 人數(shù) | 小杰抽樣 人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
(1)你認為哪位同學(xué)抽取的樣本不合理?請說明理由;
(2)根據(jù)合理抽取的樣本,把上圖中的頻數(shù)分布直方圖補畫完整;
(3)專家建議每周上網(wǎng)2小時以上(含2小時)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時間,估計該校全體初二學(xué)生中有多少名同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com