【題目】蘋果進(jìn)價是每千克x元,要得到10%的利潤,則該蘋果售價應(yīng)是每千克_____元(用含x的代數(shù)式表示)

【答案】1.1x

【解析】由題意可得,

該蘋果售價應(yīng)是每千克:x(1+10%)=1.1x元,

故答案為:1.1x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.“五一”期間,小記者劉銘隨機(jī)調(diào)查了城區(qū)若干名學(xué)生和家長對中學(xué)生帶手機(jī)現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

1)求這次調(diào)查的家長人數(shù),并補(bǔ)全圖①;

2)求圖②中表示家長贊成的圓心角的度數(shù);

3)如果該市有8萬名初中生,持無所謂態(tài)度的學(xué)生大約有多少人?

4)從這次接受調(diào)查的家長與學(xué)生中隨機(jī)抽查一個,恰好是無所謂態(tài)度的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)E(a,﹣5)與點(diǎn)F(﹣2,b)關(guān)于y軸對稱,則a= , b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=15,BC=14,AC=13,求ABC的面積.

某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.

思路:(1) ADBCD,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為橋梁,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(8,0),四邊形ABCD是正方形.

1)填空:b= ;

2)點(diǎn)D的坐標(biāo)為 ;

3)點(diǎn)M是線段AB上的一個動點(diǎn)(點(diǎn)A、B除外),在x軸上方是否存在另一個點(diǎn)N,使得以O、B、MN為頂點(diǎn)的四邊形是菱形?若不存在,請說明理由;若存在,請求出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】地圖上某地的面積為100cm2,比例尺是l500,則某地的實(shí)際面積是_______m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)130000可用科學(xué)記數(shù)法表示為(  )

A. 13×104 B. 1.3×105 C. 0.13×106 D. 1.3×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家趙爽的勾股方圓圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么(a+b)2的值為(

A.49 B.25 C.13 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC=6,BD=8,點(diǎn)E、F分別是邊AB、BC的中點(diǎn),點(diǎn)P在AC上運(yùn)動,在運(yùn)動過程中,存在PE+PF的最小值,則這個最小值是________________

查看答案和解析>>

同步練習(xí)冊答案