某商品的進(jìn)價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).
設(shè)每件商品的售價上漲元(為正整數(shù)),每個月的銷售利潤為元.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?
(1)(0<x≤15且x為整數(shù));(2)55或56,2400;
(3),,不低于51元且不高于60元且為整數(shù).
【解析】
試題分析:(1)由銷售單價每漲1元,就會少售出10件,得
(0<x≤15且x為整數(shù));
(2)把進(jìn)行配方即可求出最大值,即最大利潤.
(3)當(dāng)時,,解得:,.
當(dāng)時,,當(dāng)時,.
當(dāng)售價定為每件51或60元,每個月的利潤為2200元.
試題解析:(1)(且為整數(shù));
(2).
∵a=-10<0,
∴當(dāng)x=5.5時,y有最大值2402.5.
∵0<x≤15且x為整數(shù),
∴當(dāng)x=5時,50+x=55,y=2400(元),當(dāng)x=6時,50+6=56,y=2400(元)
∴當(dāng)售價定為每件55或56元,每個月的利潤最大,最大的月利潤是2400元.
(3)當(dāng)時,,解得:,.
∴當(dāng)時,,當(dāng)時,.
∴當(dāng)售價定為每件51或60元,每個月的利潤為2200元.
∴當(dāng)售價不低于51或60元,每個月的利潤為2200元.
∴當(dāng)售價不低于51元且不高于60元且為整數(shù)時,每個月的利潤不低于2200元(或當(dāng)售價分別為51,52,53,54,55,56,57,58,59,60元時,每個月的利潤不低于2200元).
考點:1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com