【題目】如圖,已知線段AB=20cm,點CAB上的一個動點,點D,E分別是ACBC的中點

(1)若點C恰好是AB中點,則DE的長是多少?(直接寫出結(jié)果)

(2)若BC=14cm,求DE的長

(3)試說明不論BC取何值(不超過20cm),DE的長不變

(4)知識遷移:如圖,已知∠AOB=130°,過角的內(nèi)部任一點C畫射線OC,若OD,OE分別平分∠AOC和∠BOC,試求出∠DOE的大小,并說明∠DOE的大小與射線OC的位置是否有關?

【答案】(1)DE=10cm;(2)DE=10cm;(3)證明見詳解;(4)∠DOE=65°,DOE的度數(shù)與射線OC的位置無關.

【解析】

(1)根據(jù)中點的性質(zhì)求出AC、BC的長,根據(jù)線段中點的定義計算即可;

(2)根據(jù)中點的性質(zhì)求出AC、BC的長,根據(jù)線段中點的定義計算即可;

(3)根據(jù)中點的性質(zhì)求出AC、BC的長,根據(jù)線段中點的定義計算,即可說明DE的長不變;

(4)根據(jù)角平分線的定義得到∠DOC=AOC,EOC=BOC,結(jié)合圖形計算即可求出∠DOE的大小.

解:(1)∵點C恰為AB的中點,

AC=BC=AB=10cm,

∵點D、E分別是ACBC的中點,

DC=AC=5cm,CE=BC=5cm,

DE=10cm.

(2)AB=20cm,BC=14cm,

AC=6cm,

∵點D、E分別是ACBC的中點,

CD=3cm,CE=7cm,

DE=CD+CE=10cm;

(3)∵點D、E分別是ACBC的中點,

CD=AC,CE=BC,

DE=CD+CE=(AC+BC)=AB=10cm,

∴不論AC取何值(不超過20cm),DE的長不變.

(4)OD、OE分別平分∠AOC和∠BOC,

∴∠DOC=AOC,∠COE=COB,

∴∠DOE=DOC+COE=AOC+COB)=AOB,

∵∠AOB=130°,

∴∠DOE=65°.

∴∠DOE的度數(shù)與射線OC的位置無關.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2011年5月22日﹣29日在美麗的青島市舉行了蘇迪曼杯羽毛球混合團體錦標賽.在比賽中,某次羽毛球的運動路線可以看作是拋物線y=﹣ x2+bx+c的一部分(如圖),其中出球點B離地面O點的距離是1m,球落地點A到O點的距離是4m,那么這條拋物線的解析式是( 。
A.y=﹣ x2+ x+1
B.y=﹣ x2+ x﹣1
C.y=﹣ x2 x+1
D.y=﹣ x2 x﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1 , l2 , 過點(1,0)作x軸的垂線交l1于點A1 , 過點A1作y軸的垂線交l2于點A2 , 過點A2作x軸的垂線交l1于點A3 , 過點A3作y軸的垂線交l2于點A4 , …依次進行下去,則點A2017的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為1的小正方形網(wǎng)格中,點A,B,C均落在格點上.

(1)猜想△ABC的形狀   ,并證明;

(2)直接寫出△ABC的面積=   ;

(3)畫出△ABC關于直線l的軸對稱圖形△A1B1C1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠ABC=45°,BC=12cm,半圓O的直徑DE=12cm,點E與點C重合,半圓O以2cm/s的速度從左向右運動,在運動過程中,點D、E始終在BC所在的直線上.設運動時間為x(s),半圓O在△ABC的重疊部分的面積為S(cm2).
(1)當x=(s)時,點O與線段BC的中點重合;
(2)在(1)的條件下,求半圓O與△ABC的重疊部分的面積S;
(3)當x為何值時,半圓O所在的圓與△ABC的邊所在的直線相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M為銳角三角形ABC內(nèi)任意一點,連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN.

(1)求證:△AMB≌△ENB;

(2)若AM+BM+CM的值最小,則稱點M△ABC的費馬點.若點M△ABC的費馬點,試求此時∠AMB、∠BMC、∠CMA的度數(shù);

(3)小翔受以上啟發(fā),得到一個作銳角三角形費馬點的簡便方法:如圖,分別以△ABCAB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設交點為M,則點M即為△ABC的費馬點.試說明這種作法的依據(jù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是直線l外一點,A,B,C三點在直線l上,且PBl于點B,∠APC90°,則下列結(jié)論:①線段AP是點A到直線PC的距離;②線段BP的長是點P到直線l的距離;③PA,PBPC三條線段中,PB最短;④線段PC的長是點P到直線l的距離,其中,正確的是( )

A. ②③ B. ①②③ C. ③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】魔方,又叫魔術方塊,也稱魯比克方塊,是匈牙利布達佩斯建筑學院厄爾諾·魯比克教授在1974年發(fā)明的。魔方與中國人發(fā)明的“華容道”,法國人發(fā)明的“獨立鉆石”一同被稱為智力游戲界的三大不可思議。如圖是一個4階魔方,又稱魔方的復仇,由四層完全相同的64個小立方體組成,體積為64

(1)求組成這個魔方的小立方體的棱長.

2)圖中陰影部分是一個正方形,則該陰影部分正方形的面積為_________ . 邊長是___________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】)已知,AB和DE是直立在地面上的兩根立柱,AB=6m,某一時刻AB在陽光下的投影BC=4m.
(1)請你在圖中畫出此時DE在陽光下的投影;
(2)在測量AB的投影時,同時測量出DE在陽光下的投影長為8m,請你計算DE的長.

查看答案和解析>>

同步練習冊答案