如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,且AB>AD+BC,AB是⊙O的直徑,則直線CD與⊙O的位置關系為( )
試題分析:作OE⊥CD于E.∵AD∥BC,∠C=90°,OE⊥CD,∴AD∥OE∥BC.又OA=OB,∴DE=CE.∴OE=
.又AB>AD+BC,∴OE<
,即圓心到直線的距離小于圓的半徑,則直線和圓相交.故選C.
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為點P,若AB=2,AC=
.
求:(1)∠A的度數(shù);(2)
的長;(3)弓形CBD的面積.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=
∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=
,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AO是△ABC的中線,⊙O與AB相切于點D.
(1)要使⊙O與AC邊也相切,應增加條件_
_ _______.
(2)增加條件后,請你證明⊙O與AC相切.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,已知點E在△ABC的邊AB上,以AE為直徑的⊙O與BC相切于點D,且AD平分∠BAC .
求證:AC⊥BC .
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
已知⊙O的半徑為5,圓心O到直線AB的距離為2,則⊙O上有且只有_________ 個點到直線AB的距離為3.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,在平面直角坐標系xOy中,直線AB經(jīng)過點A(-4,0)、B(0,4),⊙O的半徑為1(O為坐標原點),點P在直線AB上,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為( )
查看答案和解析>>