【題目】有3張不透明的卡片,除正面寫有不同的數(shù)字外,其它均相同.將這三張卡片背面朝上洗勻后,第一次從中隨機抽取一張,并把這張卡片標有的數(shù)字記作二次函數(shù)表達式y=a(x﹣2)2+c中的a,第二次從余下的兩張卡片中再隨機抽取一張,上面標有的數(shù)字記作表達式中的c.
(1)求抽出a使拋物線開口向上的概率;
(2)求拋物線y=a(x﹣2)2+c的頂點在第四象限的概率.(用樹狀圖或列表法求解)
【答案】(1)抽出a使拋物線開口向上的概率為;(2)拋物線y=a(x﹣2)2+c的頂點在第四象限的概率為.
【解析】
(1)三張牌中正數(shù)只有一個3,求出a為正數(shù)的概率即可;
(2)根據(jù)題意列表得出所有等可能的情況數(shù),找出符合題意的情況數(shù),即可求出所求概率.
(1)∵共有3張牌,只有1張是正數(shù),
∴抽出a使拋物線開口向上的概率為;
(2)畫樹狀圖如下:
由樹狀圖知,拋物線的頂點坐標為(2,﹣2),(2,3),(2,﹣1),(2,3),(2,﹣2),(2,﹣1)這6種可能結(jié)果,
其中,頂點在第四象限的有4種結(jié)果,
所以拋物線y=a(x﹣2)2+c的頂點在第四象限的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC,△ADE均為等腰直角三角形,點D,E,C在同直線上,連接BD.
(1)求證:△ADB≌△AEC;(2)求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD的邊AB=6,BC=12,點P為矩形ABCD邊上一點,連接AP,若線段AP、BD交點為點H,△PAB為等腰三角形,則AH的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+6x+c交x軸于A,B兩點,交y軸于點C.直線y=x﹣5經(jīng)過點B,C.
(1)求拋物線的解析式;
(2)過點A的直線交直線BC于點M.
①當AM⊥BC時,過拋物線上一動點P(不與點B,C重合),作直線AM的平行線交直線BC于點Q,若以點A,M,P,Q為頂點的四邊形是平行四邊形,求點P的橫坐標;
②連接AC,當直線AM與直線BC的夾角等于∠ACB的2倍時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,公路上有A、B、C三個汽車站,一輛汽車8:00從離A站10km的P地出發(fā),向C站勻速行駛,15min后離A站30km.
(1)設(shè)出發(fā)x h后,汽車離A站y km,寫出y與x之間的函數(shù)表達式;
(2)當汽車行駛到離A站250km的B站時,接到通知要在12:00前趕到離B站60km的C站.汽車按原速行駛,能否準時到達?如果能,那么汽車何時到達C站?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點D從點A出發(fā)以1cm/s的速度運動到點C停止.作DE⊥AC交邊AB或BC于點E,以DE為邊向右作正方形DEFG.設(shè)點D的運動時間為t(s).
(1)求AC的長.
(2)請用含t的代數(shù)式表示線段DE的長.
(3)當點F在邊BC上時,求t的值.
(4)設(shè)正方形DEFG與△ABC重疊部分圖形的面積為S(cm2),當重疊部分圖形為四邊形時,求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知AB是⊙O的直徑,AC是⊙O的弦,過O點作OF⊥AB交⊙O于點D,交AC于點E,交BC的延長線于點F,點G是EF的中點,連接CG
(1)判斷CG與⊙O的位置關(guān)系,并說明理由;
(2)求證:2OB2=BCBF;
(3)如圖2,當∠DCE=2∠F,CE=3,DG=2.5時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)參加比賽的學生共有____名;
(2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。
A. 1 B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com