【題目】在平面直角坐標系xOy中,拋物線y=ax2-4ax+c(a0)y軸交于點A,將點A向右平移2個單位長度,得到點B.直線x軸,y軸分別交于點CD.

1)求拋物線的對稱軸.

2)若點A與點D關(guān)于x軸對稱.

①求點B的坐標.

②若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

【答案】1x=2;(2)點B坐標為(2,3);②a>0a≤.

【解析】

1)根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸方程為x=即可的答案;

2)①根據(jù)直線x軸,y軸分別交于點CD可得C、D兩點坐標,根據(jù)關(guān)于x軸對稱的點的坐標特征可得A點坐標,根據(jù)平移性質(zhì)即可得B點坐標;

②分a>0a<0兩種情況,結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)即可得答案.

1)∵拋物線的解析式為y=ax2-4ax+c(a≠0),

∴拋物線的對稱軸為x==2

2)①∵直線解析式為,

x=0時,y=-3,y=0時,x=5,

C點坐標為(5,0),D點坐標為(0,-3),

∵點A于點D關(guān)于x軸對稱,

∴點A坐標為(03),

∵將點A向右平移2個單位長度,得到點B

∴點B坐標為(2,3.

②如圖,當a>0時,拋物線開口向上,

∵點A0,3),對稱軸為x=2,

∴拋物線經(jīng)過點A關(guān)于x=2的對稱點(4,3),

∴拋物線與線段BC都有交點,

a<0時,拋物線的開口向下,

∵點A0,3),

c=3

∴拋物線解析式為y=ax2-4ax+3

x=5時,25a-20a+3=0,

解得:a=,

越大,拋物線的開口越小,

a≤.

綜上所述:a的取值范圍為a>0a≤.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的正四面體骰子,骰子各個面的點數(shù)分別是14的整數(shù),把這兩枚骰子向下的面的點數(shù)記為(ab),其中第一枚骰子的點數(shù)記為a,第二枚骰子的點數(shù)記為b

1)用列舉法或樹狀圖法求(ab)的結(jié)果有多少種?

2)求方程x2+bx+a0有實數(shù)解的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(﹣30),(0,﹣3).

1)求拋物線的表達式.

2)已知點(m,k)和點(n,k)在此拋物線上,其中mn,請判斷關(guān)于t的方程t2+mt+n0是否有實數(shù)根,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為3,∠BAD60°,點E、F在對角線AC上(點E在點F的左側(cè)),且EF1,則DE+BF最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC和△ADE中,ABAC,ADAE,∠BAC=∠DAE40°,連接BD、CE.將△ADE繞點A旋轉(zhuǎn),BD、CE也隨之運動.

1)求證:BDCE;

2)在△ADE繞點A旋轉(zhuǎn)過程中,當AEBC時,求∠DAC的度數(shù);

3)如圖②,當點D恰好是△ABC的外心時,連接DC,判斷四邊形ADCE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的半徑為1,的直徑,過點的切線,的中點,點,四邊形是平行四邊形.

1)求的長:

2的切線嗎?若是,給出證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為豐富學生的文體生活,某學校準備成立“聲樂、演講、舞蹈、足球、籃球”五個社團,要求每個學生都參加一個社團且每人只能參加一個社團.為了了解即將參加每個社團的大致人數(shù),學校對部分學生進行了抽樣調(diào)查,在整理調(diào)查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)被抽查的學生一共有人__________

2)將條形統(tǒng)計圖補充完整;

3)若全校有學生1500人,請你估計全校有意參加“聲樂”杜團的學生人數(shù);

4)在“舞蹈社團”活動中,甲、乙、丙、丁、戊五位同學表現(xiàn)優(yōu)秀,現(xiàn)決定從這五位同學中任選兩位參加“元旦迎新匯演”,請用列表或畫樹狀圖的方法求出恰好選中甲、乙兩位同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中四邊形OABC是邊長為6的正方形,平行于對角線AC的直線lO出發(fā),沿x軸正方向以每秒一個單位長度的速度運動,運動到直線l與正方形沒有交點為止,設(shè)直線l掃過正方形OABC的面積為S,直線l的運動時間為t(秒),下列能反映St之間的函數(shù)圖象的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1x+2與反比例函數(shù)y2的圖象交于A,B兩點,點A的坐標為(1a).

1)求出k的值及點B的坐標;

2)根據(jù)圖象,寫出y1y2x的取值范圍.

查看答案和解析>>

同步練習冊答案