AB、CD是平面內的四點,經(jīng)過其中每兩個點畫直線,可畫出的直線條數(shù)是

[  ]

A.1條
B.4條
C.6條
D.1條或4條或6條

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點P是平面坐標系中一點,則點P到原點的距離是( 。
A、3
B、
2
C、
7
D、
53

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點O是平面直角坐標系的原點,點A的坐標為(0,-4),點B為x軸上一動點,以線段AB為邊作正方形ABCD(按逆時針方向標記),正方形ABCD隨著點B的運動而隨之相應變動.點E為y軸的正半軸與正方形A精英家教網(wǎng)BCD某一邊的交點,設點B的坐標為(t,0),線段OE的長度為m.
(1)當t=3時,求點C的坐標;
(2)當t>0時,求m與t之間的函數(shù)關系式;
(3)是否存在t,使點M(-2,2)落在正方形ABCD的邊上?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
在平面直角坐標系中,已知x軸上兩點A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點,我們可以通過構造直角三角形來求AB間距離.
如圖,過A,B分別向x軸,y軸作垂線AM1、AN1和BM2、BN2,垂足分別是M1(x1,0),N1(0,y1),M2(x2,0),N2(0,y2),直線AN1交BM2于Q點,在Rt△ABQ中,|AB|2=|AQ|2+|QB|2
∵|AQ|=|M1M2|=|x2-x1|,|QB|=|N1N2|=|y2-y1|,∴|AB|2=|x2-x1|2+|y2-y1|2
由此得任意兩點[A(x1,y1),B(x2,y2)]間距離公式為:|AB|=
(x2-x1)2+(y2-y1)2

(1)直接應用平面內兩點間距離公式計算,點A(1,-3),B(-2,1)之間的距離為
5
5
;
(2)平面直角坐標系中的兩點A(1,3)、B(4,1),P為x軸上任一點,當PA+PB最小時,直接寫出點P的坐標為
13
4
,0)
13
4
,0)
,PA+PB的最小值為
5
5
;
(3)應用平面內兩點間距離公式,求代數(shù)式
x2+(y-2)2
+
(x-3)2+(y-1)2
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•翔安區(qū)模擬)已知A、B、C是平面上不共線的三點,那么,以A、B、C為頂點,可在平面上畫出平行四邊形的個數(shù)是
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鐵嶺)如圖,已知拋物線經(jīng)過原點O和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=-2x-1經(jīng)過拋物線上一點B(-2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.
(1)求m的值及該拋物線對應的解析式;
(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;
(3)點Q是平面內任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形?若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案