【題目】如圖,小明想測量電線桿AB的高度,但在太陽光下,電線桿的影子恰好落在地面和土地的坡面上,量得坡面上的影長CD4m,地面上的影長BC10m,土坡坡面與地面成30°的角,此時測得1m長的木桿的影長為2m,求電線桿的高度.(結(jié)果精確到0.1m)

【答案】8.7m

【解析】

解:解法一:如圖,連接AD,過點(diǎn)DDEAB于點(diǎn)E,過點(diǎn)DDFBCBC的延長線于點(diǎn)F,則得矩形BFDE,所以DFBEDEBF.在RtDCF中,由CD4m,∠DCF30°,得DF2mm,所以m,BEDF2m.因?yàn)榇藭r1m長的木桿的影長為2m,所以,即,解得m

所以(m)

答:電線桿的高度約為8.7m

解法二:如圖,連接AD并延長交BC的延長線于點(diǎn)M,過點(diǎn)DDFBM于點(diǎn)F

RtDCF中,由CD4m,∠DCF30°,得DF2m,所以m.因?yàn)榇藭r1m長的木桿的影長為2m.所以,所以FM2DF4m.又DFAB,所以,即,

解得(m)

答:電線桿的高度約為8.7m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機(jī)抽取了本區(qū)部分選報引體向上項(xiàng)目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計(jì)圖:

請你根據(jù)圖中的信息,解答下列問題:

1)寫出扇形圖中______,并補(bǔ)全條形圖;

2)樣本數(shù)據(jù)的平均數(shù)是______,眾數(shù)是______,中位數(shù)是______;

3)該區(qū)體育中考選報引體向上的男生共有1200人,如果體育中考引體向上達(dá)6個以上(含6個)得滿分,請你估計(jì)該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在RtABC中,∠C90°AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O

1)用直尺和圓規(guī)在圖中作出⊙O(不寫作法,保留作圖痕跡),判斷直線BC與⊙O的位置關(guān)系,并說明理由;(友情提醒:必須作在答題卷上哦。

2)若AC3,BC4,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 請結(jié)合題意填空,完成本題的解答.

)解不等式,得   ;

)解不等式,得   ;

)把不等式的解集在數(shù)軸上表示出來.

)原不等式組的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,ODAB于點(diǎn)D,交⊙O于點(diǎn)E,∠C60°,如果⊙O的半徑為2,則結(jié)論錯誤的是( 。

A.ADDBB.C.OD1D.AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,∠BAC54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC的度數(shù)是( 。

A. 106°B. 108°C. 110°D. 112°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+ax軸交于點(diǎn)A4,0),與y軸交于點(diǎn)B,拋物線yx2+bx+c經(jīng)過點(diǎn)A,B.點(diǎn)Mm0)為x軸上一動點(diǎn),過點(diǎn)M且垂直于x軸的直線分別交直線AB及拋物線于點(diǎn)P,N

1)填空:點(diǎn)B的坐標(biāo)為   ,拋物線的解析式為   ;

2)當(dāng)點(diǎn)M在線段OA上運(yùn)動時(不與點(diǎn)O,A重合),

①當(dāng)m為何值時,線段PN最大值,并求出PN的最大值;②求出使△BPN為直角三角形時m的值;

3)若拋物線上有且只有三個點(diǎn)N到直線AB的距離是h,請直接寫出此時由點(diǎn)OB,NP構(gòu)成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.

1)如圖1,在ABC中,AB=AC,ADABC的角平分線,E,F分別是BDAD上的點(diǎn).求證:四邊形ABEF是鄰余四邊形.

2)如圖2,在5×4的方格紙中,AB在格點(diǎn)上,請畫出一個符合條件的鄰余四邊形ABEF,使AB是鄰余線,EF在格點(diǎn)上.

3)如圖3,在(1)的條件下,取EF中點(diǎn)M,連結(jié)DM并延長交AB于點(diǎn)Q,延長EFAC于點(diǎn)N.若NAC的中點(diǎn),DE=2BE,QB=6,求鄰余線AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),且

(1)求該拋物線的函數(shù)表達(dá)式;

(2)動點(diǎn)在線段下方的拋物線上.

①連接、,過點(diǎn)軸的垂線,垂足為,交于點(diǎn).過點(diǎn),垂足為.設(shè)點(diǎn)的橫坐標(biāo)為,線段的長為,用含的代數(shù)式表示

②過點(diǎn),垂足為,連接.是否存在點(diǎn),使得中的一個角恰好等于2?如果存在,求出點(diǎn)的橫坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案