【題目】海水養(yǎng)殖是萊州經(jīng)濟產業(yè)的亮麗名片之一,某養(yǎng)殖場響應山東省加快新舊動能轉換的號召,今年采用新技術投資養(yǎng)殖了200萬籠扇貝,并且全部被訂購,已知每籠扇貝的成本是40元,售價是100元,打撈出售過程中發(fā)現(xiàn),一部分扇貝生長情況不合要求,最后只能按照25元一籠出售,如果純收入為萬元,不合要求的扇貝有萬籠.

1)求純收入關于的關系式.

2)當為何值時,養(yǎng)殖場不賠不嫌?

【答案】1y=-75+12000();(2160

【解析】

1)合要求和不合要求的扇貝出售的收入減去扇貝的成本,即為純收入,根據(jù)題意列出關于yx的關系式,化簡即可.

2)養(yǎng)殖場不賠不賺,即純收入為0,令y=0可得x的值.

1)不合要求的扇貝有x萬籠,則合要求的扇貝有(200-x)萬籠,

由題意得:

y=100(200-x)+25x-200×40

=-75+12000()

純收入yx的關系式為:y=-75+12000()

2)若養(yǎng)殖場不賠不賺,則y=0

-75x+12000=0

解得x=160

x160時,養(yǎng)殖場不賠不賺.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】等邊三角形的邊長為,將其放置在如圖所示的平面直角坐標系中,其中邊在軸上,邊的高軸上.一只電子蟲從出發(fā),先沿軸到達點,再沿到達點,已知電子蟲在軸上運動的速度是在上運動速度的倍,若電子蟲走完全程的時間最短,則點的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC是等邊三角形,點C關于AB對稱的點為C′,點P是直線CB上的一個動點,連接AP,作∠APD60°交射線BC于點D

1)若點P在線段CB上(不與點C′,點B重合)

如圖1,當點P是線段CB的中點時,直接寫出線段PD與線段PA的數(shù)量關系   

如圖2,點P是線段CB上任意一點,證明PDPA的數(shù)量關系.

2)若點P在線段CB的延長線上,

依題意補全圖3;

直接寫出線段BD,AB,BP之間的數(shù)量關系為:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,在平面內,如果一個圖形繞著一個定點旋轉一定的角度后能與自身重合,那么就稱這個圖形是旋轉對稱圖形,轉的這個角稱為這個圖形的一個旋轉角.例如,正方形繞著它的對角線的交點旋轉后能與自身重合所以正方形是旋轉對稱圖形,它有一個旋轉角為

判斷下列說法是否正確(在相應橫線里填上”)

①正五邊形是旋轉對稱圖形,它有一個旋轉角為.________

②長方形是旋轉對稱圖形,它有一個旋轉角為.________

填空:下列圖形中時旋轉對稱圖形,且有一個旋轉角為的是________.(寫出所有正確結論的序號)

①正三角形②正方形③正六邊形④正八邊形

寫出兩個多邊形,它們都是旋轉對稱圖形,都有一個旋轉角為,其中一個是軸對稱圖形,但不是中心對稱圖形;另一個既是軸對稱圖形,又是中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線l1y=kx+b與直線l2y=bx+k在同一坐標系中的大致位置是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,厘米,厘米,點出發(fā),以每秒厘米的速度向運動,點同時出發(fā),以每秒厘米的速度向運動,其中一個動點到端點時,另一個動點也相應停止運動,那么,當以、為頂點的三角形與相似時,運動時間為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生利用標桿測量學校旗桿的高度,標桿CD等于3m,標桿與旗桿的水平距離BD15m,人的眼睛距地面的高度EF1.6m,人與標桿CD的水平距離DF2m.則旗桿AB的高度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖△ABC和△CDE均為等邊三角形,BC、D三點在同一條直線上,連接線段BE、AD交于點F,連接CF

1)求證:∠FBC=FAC.

2)求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將進價為元的臺燈以元售出,平均每月能售出個,調查表明:這種臺燈的售價每上漲元,其銷售量就減少

為了實現(xiàn)平均每月元的銷售利潤,這種臺燈的售價應定為多少?這時應進臺燈個?

如果商場要想每月的銷售利潤最多,這種臺燈的售價又將定為多少?這時應進臺燈多個?

查看答案和解析>>

同步練習冊答案