【題目】如圖,已知AB是⊙O的直徑,點C是⊙O上一點,連接BC,AC,過點C作直線CD⊥AB于點D,點E是AB上一點,直線CE交⊙O于點F,連接BF與直線CD延長線交于點G.求證:BC2=BG·BF.
科目:初中數(shù)學 來源: 題型:
【題目】模型建立:如圖1,等腰直角三角形中,,,直線經(jīng)過點,過作于,過作于.
(1)求證:;
(2)模型應用:
①已知直線l1:與y軸交于點,將直線l1繞著點順時針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式;
②如圖3,長方形ABCO,為坐標原點,的坐標為(8,6),、分別在坐標軸上,是線段上動點,點是直線上的一點,若△APD是以點D為直角頂點的等腰Rt△,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ACB=∠ECD=90°,AC=BC,EC=DC,點D在AB邊上.
(1)求證:△ACE≌△BCD.
(2)若AE=3,AD=2.求ED的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=900,AC=10,點E在邊CB上,CE=,點D在邊AB的中點上,CD⊥AE,垂足為F,則AB的長=__
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 平面直角坐標系中,過點C(28,28)分別作x軸、y軸的垂線,垂足分別為B、A,一次函數(shù)y=x+3的圖像分別與x軸和CB交于點D、E,點P 是DE中點,連接AP.
⑴ 求點D與點E的坐標; ⑵求證:△ADO≌△AEC;⑶ 求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B在拋物線L1上(點A與點B不重合),我們把這樣的兩拋物線L1、L2稱為“伴隨拋物線”,可見一條拋物線的“伴隨拋物線”可以有多條.
(1)拋物線L1:y=-x2+4x-3與拋物線L2是“伴隨拋物線”,且拋物線L2的頂點B的橫坐標為4,求拋物線L2的表達式;
(2)若拋物線y=a1(x-m)2+n的任意一條“伴隨拋物線”的表達式為y=a2(x-h)2+k,請寫出a1與a2的關(guān)系式,并說明理由;
(3)在圖②中,已知拋物線L1:y=mx2-2mx-3m(m>0)與y軸相交于點C,它的一條“伴隨拋物線”為L2,拋物線L2與y軸相交于點D,若CD=4m,求拋物線L2的對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲.乙兩種商品原來的單價和為100元,因市場變化,甲商品降價10%,乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%.若設甲.乙兩種商品原來的單價分別為x元.y元,則可列方程組為_________________;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出△ABC 關(guān)于 y 軸對稱的△A1B1C1并寫出坐標;
(2)求出△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點D,直線l2經(jīng)過點A、B,直線l1、l2交于點C.
(1)求直線l2的函數(shù)解析式;
(2)求△ADC的面積;
(3)在直線l2上是否存在點P,使得△ADP面積是△ADC面積的2倍?如果存在,請求出P坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com