如圖,在△ABC中,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),當(dāng)AD=5時,求BF的長;
(3)填空:在(2)的條件下,如果以點(diǎn)C為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為5,則r的取值范圍為______
【答案】分析:(1)欲證明直線BF是⊙O的切線,只需證明AB⊥BF;
(2)根據(jù)圓心角、弧、弦間的關(guān)系,等邊三角形的判定證得△AOD是等邊三角形,所以在Rt△ABF中,∠ABF=90°,∠OAD=60°,AB=10,則利于∠A的正切三角函數(shù)的定義來求BF邊的長度;
(3)根據(jù)已知條件知⊙O與⊙C相交.
解答:(1)證明:如圖,∵∠CBF=∠CFB,
∴CB=CF.    
又∵AC=CF,
∴CB=AF,
∴△ABF是直角三角形,
∴∠ABF=90°,即AB⊥BF.
又∵AB是直徑,
∴直線BF是⊙O的切線.

(2)解:如圖,連接DO,EO,
∵點(diǎn)D,點(diǎn)E分別是弧AB的三等分點(diǎn),
∴∠AOD=60°.
又∵OA=OD,
∴△AOD是等邊三角形,
∴OA=AD=OD=5,∠OAD=60°,
∴AB=10.
∴在Rt△ABF中,∠ABF=90°,BF=AB•tan60°=10,即BF=10

(3)如圖,連接OC.則OC是Rt△ABF的中位線,
∵由(2)知,BF=10,
∴圓心距OC=
∵⊙O半徑OA=5.
<r<
故填:<r<
點(diǎn)評:本題綜合考查了圓心角、弧、弦間的關(guān)系,切線的判定與性質(zhì),相交兩圓的性質(zhì),直角三角形的判定與性質(zhì)以及特殊角的三角函數(shù)值等知識點(diǎn).切線判定定理中所闡述的由位置來判定直線是圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案