【題目】如圖,矩形ABCD的邊AB的解析式為yax+2,頂點C,D在雙曲線yk0)上.若AB2AD,則k_____

【答案】3

【解析】

過點DDEy軸于E,過點CCFx軸,根據(jù)直線的解析式求出點AB的坐標,從而得到OA、OB.易證AED∽△BOA,根據(jù)相似三角形的性質可求出EDAE,從而可得到點D的坐標(用a表示),同理可得到點C的坐標(用a表示),然后根據(jù)點DC在反比例函數(shù)的圖象上得到關于a的方程,就可求得D的坐標,代入yk0)即可求得.

過點DDEy軸于E,過點CCFx軸,如圖所示.

∵點A、B是直線yax+2分別與y軸、x軸的交點,

A0,2),B(﹣,0),

OA2,OB=﹣

∵四邊形ABCD是矩形,

∴∠A90°,ADBC

AB2AD,

,

∵∠DEA=∠AOB90°,∠EAD=∠ABO90°﹣∠OAB,

∴△AED∽△BOA,

,

ED1,AE=﹣,

∴點D12).

同理:點C1,﹣).

∵點CD都在反比例函數(shù)yk0)的圖象上,

2)=(1(﹣),

a±1

a0,

a=﹣1,

∴點D的坐標為(1,3),

k1×33

故答案為3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】本學期開學初,學校體育組對九年級某班50名學生進行了跳繩項目的測試,根據(jù)測試成績制作了下面兩個統(tǒng)計圖.

根據(jù)統(tǒng)計圖解答下列問題:

1)本次測試的學生中,得4分的學生有多少人?

2)本次測試的平均分是多少分?

3)通過一段時間的訓練,體育組對該班學生的跳繩項目進行了第二次測試,測得成績的最低分為3分.且得4分和5分的人數(shù)共有45人,平均分比第一次提高了0.8分,問第二次測試中得4分、5分的學生各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小波在復習時,遇到一個課本上的問題,溫故后進行了操作、推理與拓展.

(1)溫故:如圖1,在ABC中,ADBC于點D,正方形PQMN的邊QMBC上,頂點P,N分別在AB AC上,若BC=6,AD=4,求正方形PQMN的邊長.

(2)操作:能畫出這類正方形嗎?小波按數(shù)學家波利亞在《怎樣解題》中的方法進行操作:如圖2,任意畫ABC,在AB上任取一點P′,畫正方形P′Q′M′N′,使Q′,M′BC邊上,N′ABC內,連結B N′并延長交AC于點N,畫NMBC于點M,NPNMAB于點PPQBC于點Q,得到四邊形PQMN.小波把線段BN稱為波利亞線

(3)推理:證明圖2中的四邊形PQMN 是正方形.

(4)拓展:在(2)的條件下,于波利業(yè)線B N上截取NE=NM,連結EQ,EM(如圖3).當tan∠NBM=時,猜想∠QEM的度數(shù),并嘗試證明.

請幫助小波解決溫故、推理、拓展中的問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形中,,點是射線上一點,點是射線上一點,且滿足.

1)如圖,當點在線段上時,若,在線段上截取,聯(lián)結.求證:;

2)如圖,當點在線段的延長線上時,若,,設,,求關于的函數(shù)關系式及其定義域;

3)記交于點,在(2)的條件下,若相似,求線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 為等腰直角三角形,∠ACB90°,點 M AB 邊的中點,點 N 為射線 AC 上一點,連接 BN,過點 C CDBN 于點 D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點 E,若 AB20,MD14,則 NE 的長為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,該拋物線是由yx2平移后得到,它的頂點坐標為(﹣,﹣),并與坐標軸分別交于AB,C三點.

1)求A,B的坐標.

2)如圖2,連接BC,AC,在第三象限的拋物線上有一點P,使∠PCA=∠BCO,求點P的坐標.

3)如圖3,直線yax+bb0)與該拋物線分別交于P,G兩點,連接BPBG分別交y軸于點D,E.若ODOE3,請?zhí)剿?/span>ab的數(shù)量關系.并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,直線交于點

1)如圖1,若,填空:①的值為____________;

的度數(shù)為___________.

2)如圖2,若,求的值(用含的式子表示)及的度數(shù);

3)若,,將三角形繞著點在平面內旋轉,直接寫出當點、、在同一直線上時,線段的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】準備一張矩形紙片,按如圖操作:

將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.

1)求證:四邊形BFDE是平行四邊形;

2)若四邊形BFDE是菱形,BE2,求菱形BFDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線軸的正半軸交于點A,拋物線的頂點為B,直線經(jīng)過A,B兩點,且

1)求拋物線的解析式

2)點P在第一象限內對稱軸右側的拋物線上,其橫坐標為,連接OP,交對稱軸于點C,過點C軸,交直線于點,連接,設線段的長為,求之間的函數(shù)關系式,并直接寫出自變量的取值范圍;

3)在(2)的條件下,點在線段上,連接,交于點F,點GBE的中點,過點G軸,交的延長線于點,當時,求點的坐標;

查看答案和解析>>

同步練習冊答案