如圖,邊長為5的正方形OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AG交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,試證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)(t>0),結(jié)論CE=EP是否成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.精英家教網(wǎng)
分析:(1)(2)可用同種方法證明:在OC上截取OG=OE,由正方形的性質(zhì)可得CG=AE,∠EAP=∠CGE=135°,由同角的余角相等可得∠GCE=∠AEP,故有△GCE≌△AEP?CE=EP;
(3)過點B作BM∥EP交y軸于點M,由同角的余角相等可得∠4=∠6,又因為CE=OC,可得△BCM≌△COE?BM=CE,而CE=EP,則BM=EP,由一組對邊平行有相等證得四邊形BMEP是平行四邊形,OM=CO-CM=5-t,故可求得點M的坐標(biāo).
解答:解:(1)(2)方法一:
在OC上截取ON=OE,
精英家教網(wǎng)
則AE=CN,∠EAP=∠CNE=135°
∵CE⊥EP
∴∠CEO+∠PEA=90°
又∵∠OCE+∠OEC=90°,
∴∠NCE=∠AEP
∴△NCE≌△AEP
∴CE=EP,即不論點E的坐標(biāo)是多少,都存在CE=EP,(1)(2)得證;

方法二:(1)過點P作PH⊥x軸,垂足為H
∴∠2=∠1=90°
∵EF⊥CE
∴∠3=∠4
∴△COE∽△EHP
CO
OE
=
EH
HP

由題意知:CO=5,OE=3,EH=EA+AH=2+HP
5
3
=
2+HP
HP
即HP=3
∴EH=5
在Rt△COE和Rt△EHP中
∴CE=
CO2+OE2
=
34
,EP=
EH2+PH2
=
34

故CE=EP

(2)CE=EP仍成立,理由如下:
同理△COE∽△EHP,
CO
OE
=
EH
HP

由題意知:CO=5,OE=t,EH=5-t+HP
5
t
=
5-t+HP
HP
,整理得(5-t)HP=t(5-t),
∵點E不與點A重合,A(5,0),
∴5-t≠0
∴HP=t,
∴AH=t,
∴EH=5
∴在Rt△COE和Rt△EHP中
CE=
25+t2
EP=
25+t2

∴CE=EP

(3)y軸上存在點M,使得四邊形BMEP是平行四邊形.
理由如下:
過點B作BM∥EP交y軸于點M
∴∠5=∠CEP=90°
∴∠4+∠ECB=90°,∠6+∠ECB=90°,
∴∠6=∠4
在△BCM和△COE中
∠6=∠4
BC=OC
∠BCM=∠COE

∴△BCM≌△COE(ASA)
∴BM=CE
而CE=EP
∴BM=EP
由于BM∥EP
∴四邊形BMEP是平行四邊形,
由△BCM≌△COE
可得CM=OE=t
∴OM=CO-CM=5-t
故點M的坐標(biāo)為(0,5-t).
點評:本題(1)(2)可用不同的方法證明,顯然方法一簡單,用了正方形的性質(zhì),直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,而方法二中要用到勾股定理,相似三角形的判定和性質(zhì),用變量表示線段的長,故復(fù)雜.(3)主要用到全等三角形的判定和性質(zhì)及平行四邊形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為
π2
的正△ABC,點A與原點O重合,若將該正三角形沿數(shù)軸正方向翻滾一周,點A恰好與數(shù)軸上的點A′重合,則點A′對應(yīng)的實數(shù)是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖將邊長為1的正方形OAPB沿軸正方向連續(xù)翻轉(zhuǎn)2006次,點P依次落在點,,……的位置,則的橫坐標(biāo)=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年新人教版九年級(上)期中數(shù)學(xué)試卷(7)(解析版) 題型:解答題

如圖,邊長為6的正方OABC的頂點O在坐標(biāo)原點處,點A、C分別在x軸、y軸的正半軸上,點E是OA邊上的點(不與點A重合),EF⊥CE,且與正方形外角平分線AC交于點P.
(1)當(dāng)點E坐標(biāo)為(3,0)時,證明CE=EP;
(2)如果將上述條件“點E坐標(biāo)為(3,0)”改為“點E坐標(biāo)為(t,0)”,結(jié)論CE=EP是否仍然成立,請說明理由;
(3)在y軸上是否存在點M,使得四邊形BMEP是平行四邊形?若存在,用t表示點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案