【題目】如圖,直線與二次函數(shù)的圖象交于點B、點C,二次函數(shù)圖象的頂點為A,當是等腰直角三角形時,則______.
【答案】1
【解析】
作拋物線的對稱軸,交BC于D,根據(jù)拋物線的性質(zhì)和等腰直角三角形的性質(zhì)得出B(n+3,n),代入解析式求得即可.
作拋物線的對稱軸,交BC于D,
∵直線y=n與二次函數(shù)y=(x-2)2-1的圖象交于點B、點C,
∴BC∥x軸,
∵△ABC是等腰直角三角形,
∴∠CAB=90°,AC=BC,
∵直線CD是拋物線的對稱軸,
∴AD⊥BC,∠CAD=∠BAD=45°,
∴△ADB是等腰直角三角形,
∴AD=BD,
∵拋物線的頂點為(2,-1),
∴AD=n+1,
∴B(n+3,n),
把B的坐標代入y=(x-2)2-1得,n=(n+3-2)2-1,
解得n=1,
故答案為1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,如圖,在△ABC中,∠C=90,AC=BC,AD是∠BAC的平分線,DE⊥AB,垂足為E,若AB=15cm,則△DBE的周長為______cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小麗在操場上玩耍,小麗突然高興地對小明說:“我踩到你的‘腦袋’了.”如圖即表示此時小明和小麗的位置.
(1)請畫出此時小麗在陽光下的影子;
(2)若已知小明的身高為1.60 m,小明和小麗之間的距離為2 m,而小麗的影子長為1.75 m,求小麗的身高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】化簡求值
(1)(2x+1)2﹣4(x﹣1)(x+1),其中x=;
(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(2x),其中x=﹣2,y=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系 ;
(2)如圖2,過點B作BD⊥AM于點D,∠BAD與∠C有何數(shù)量關系,并說明理由;
(3)如圖3,在(2)問的條件下,點E,F在DM上,連接BE,BF,CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了調(diào)查學生對課改實驗的滿意度,隨機抽取了部分學生作問卷調(diào)查:用“A”表示“很滿意“,“B”表示“滿意”,“C”表示“比較滿意”,“D”表示“不滿意”.工作人員根據(jù)問卷調(diào)查數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)本次問卷調(diào)查,共調(diào)查了多少名學生?
(2)將條形統(tǒng)計圖中的B等級補完整;
(3)求出扇形統(tǒng)計圖中,D等級所對應扇形的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面
的最大距離是5m.
(1)經(jīng)過討論,同學們得出三種建立平面直角坐標系的方案(如下圖)
你選擇的方案是_____(填方案一,方案二,或方案三),則B點坐標是______,求出你所選方案中的拋物線的表達式;
(2)因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P,給出如下定義:記點P到x軸的距離為,到y軸的距離為,若,則稱為點P的最大距離;若,則稱為點P的最大距離.
例如:點P(,)到到x軸的距離為4,到y軸的距離為3,因為3 < 4,所以點P的最大距離為.
(1)①點A(2,)的最大距離為 ;
②若點B(,)的最大距離為,則的值為 ;
(2)若點C在直線上,且點C的最大距離為,求點C的坐標;
(3)若⊙O上存在點M,使點M的最大距離為,直接寫出⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連結CE,DF,下列說法不正確的是
A. 四邊形CEDF是平行四邊形
B. 當時,四邊形CEDF是矩形
C. 當時,四邊形CEDF是菱形
D. 當時,四邊形CEDF是菱形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com