【題目】如圖,某建筑物上掛著“巴山渝水,魅力重慶”的宣傳條幅,王同學(xué)利用測(cè)傾器在斜坡的底部處測(cè)得條幅底部的仰角為60°,沿斜坡AB走到B處測(cè)得條幅頂部C的仰角為50°.已知斜坡的坡度米,米(點(diǎn)在同平面內(nèi),,測(cè)傾器的高度忽略不計(jì)),則條幅的長(zhǎng)度約為(參考數(shù)據(jù):)
A.12.5米B.12.8米C.13.1米D.13.4米
【答案】B
【解析】
過(guò)點(diǎn)B作BF⊥AE于點(diǎn)F,BH⊥DE于點(diǎn)H,在Rt△AFB中,由坡度和勾股定理可以求出BF、AF的長(zhǎng)度,在Rt△BHC中,利用三角函數(shù)求出CH,再求出DH,最后用CH-DH求出CD即可.
如圖所示:
過(guò)點(diǎn)B作BF⊥AE于點(diǎn)F,BH⊥DE于點(diǎn)H,
∵的坡度m,
∴,,
∴,BF為邊長(zhǎng),
∴解得BF=5,則AF=12m,
∵AE=12m,
∴EF=AF+AE=24(m),
∵∠BHE=∠HEF=∠BFE=90°,
∴四邊形BFEH是矩形,
∴EH=BF=5m,BH=EF=24m,
在Rt△BHC中,∠CBH=50°,
∴CH=BH24×1.19=28.56(m),
在Rt△ADE中,∠DAE=60°,
∴DE=AE=12×20.76(m),
∴CD=CH-DH=28.56-(20.76-5)=12.8(m),
∴條幅CD的長(zhǎng)度約為12.8m,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一段6000米的道路由甲乙兩個(gè)工程隊(duì)負(fù)責(zé)完成.已知甲工程隊(duì)每天完成的工作量是乙工程隊(duì)每天完成工作量的2倍,且甲工程隊(duì)單獨(dú)完成此項(xiàng)工程比乙工程隊(duì)單獨(dú)完成此項(xiàng)工程少用10天.
(1)求甲、乙兩工程隊(duì)每天各完成多少米?
(2)如果甲工程隊(duì)每天需工程費(fèi)7000元,乙工程隊(duì)每天需工程費(fèi)5000元,若甲隊(duì)先單獨(dú)工作若干天,再由甲乙兩工程隊(duì)合作完成剩余的任務(wù),支付工程隊(duì)總費(fèi)用不超過(guò)79000元,則兩工程隊(duì)最多可以合作施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在云南大理坐落著美麗的大理三塔.?dāng)?shù)學(xué)活動(dòng)小組開展課外實(shí)踐活動(dòng),在一個(gè)陽(yáng)光明媚的上午,他們?nèi)y(cè)量三塔中一塔的高度,攜帶的測(cè)量工具有:測(cè)角儀.皮尺.小鏡子.
(1)小華利用測(cè)角儀和皮尺測(cè)量塔高. 圖1為小華測(cè)量塔高的示意圖.她先在塔前的平地上選擇一點(diǎn),用測(cè)角儀測(cè)出看塔頂的仰角,在點(diǎn)和塔之間選擇一點(diǎn),測(cè)出看塔頂的仰角,然后用皮尺量出.兩點(diǎn)的距離為m,自身的高度為m.請(qǐng)你利用上述數(shù)據(jù)幫助小華計(jì)算出塔的高度(,結(jié)果保留整數(shù)).
(2)如果你是活動(dòng)小組的一員,正準(zhǔn)備測(cè)量塔高,而此時(shí)塔影的長(zhǎng)為m(如圖2),你能否利用這一數(shù)據(jù)設(shè)計(jì)一個(gè)測(cè)量方案?如果能,
請(qǐng)回答下列問(wèn)題:
①在你設(shè)計(jì)的測(cè)量方案中,選用的測(cè)量工具是: ;
②要計(jì)算出塔的高,你還需要測(cè)量哪些數(shù)據(jù)? .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),的邊垂直軸于點(diǎn),反比例函數(shù)的圖象經(jīng)過(guò)的中點(diǎn),與邊相交于點(diǎn),.
(1)求反比例函數(shù)的解析式;
(2)求的值;
(3)經(jīng)過(guò)、兩點(diǎn)的直線的解析式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠EOF=60°,在射線OE上取一點(diǎn)A,使OA=10cm,在射線OF上取一點(diǎn)B,使OB=16cm.以OA、OB為鄰邊作平行四邊形OACB.若點(diǎn)P在射線OF上,點(diǎn)Q在線段CA上,且CQ:OP=1:2.設(shè)CQ=a(a>0).
(1)連接PQ,當(dāng)a=2時(shí),求線段PQ的長(zhǎng)度.
(2)若以點(diǎn)P、B、C、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求a的值.
(3)連接PQ,以PQ所在的直線為對(duì)稱軸,作點(diǎn)C關(guān)于直線PQ的對(duì)稱點(diǎn)C',當(dāng)點(diǎn)C′恰好落在平行四邊形OACB的邊上或者邊所在的直線上時(shí),直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為⊙O的內(nèi)接三角形,∠ABC的角平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE∥AC交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE為⊙O的切線;
(2)若DE=AC,求∠ACB的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A在x軸正半軸上,點(diǎn)B在y軸正半軸上,O為坐標(biāo)原點(diǎn),OA=OB=1,過(guò)點(diǎn)O作OM1⊥AB于點(diǎn)M1;過(guò)點(diǎn)M1作M1A1⊥OA于點(diǎn)A1:過(guò)點(diǎn)A1作A1M2⊥AB于點(diǎn)M2;過(guò)點(diǎn)M2作M2A2⊥OA于點(diǎn)A2…以此類推,點(diǎn)M2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,頂點(diǎn)A,B分別在反比例函數(shù)()與()的圖象上,則tan∠BAO的值為( )
A.1B.2C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解我縣中學(xué)生參加“新冠肺炎知識(shí)”競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),根據(jù)成績(jī)分成如下四個(gè)組:A:60≤x<70,B:70≤x<80,C:80≤x<90,D:90≤x≤100,并制作出如下的扇形統(tǒng)計(jì)圖和直方圖.請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中的m= ,并在圖中補(bǔ)全頻數(shù)分布直方圖;
(2)小明的成績(jī)是所有被抽查學(xué)生成績(jī)的中位數(shù) ,據(jù)此推斷他的成績(jī)?cè)?/span> 組;
(3)4個(gè)小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎(jiǎng)典禮,恰好抽中A,C兩組學(xué)生的概率是多少?請(qǐng)列表或畫樹狀圖說(shuō)明;
(4)若我縣學(xué)生人數(shù)為18000人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)我縣學(xué)生成績(jī)?cè)?/span>C、D兩組的共多少人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com