【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合).

(1)若點A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當圓心O在∠BAD的內(nèi)部時,求∠OBA+ODA的度數(shù);

②當圓心O在∠BAD的外部時,請畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關系.

【答案】160°;(2①60°;②∠OBA=∠ODA+60°

【解析】

試題(1)連接BD,首先圓周角定理,求出∠BAD的度數(shù)是多少;然后根據(jù)三角形的內(nèi)角和定理,求出∠0BD∠ODB的度數(shù)和是多少;最后在△ABD中,用180°減去∠BAD、∠0BD、∠ODB的度數(shù)和,求出∠OBA+∠ODA等于多少即可.

2首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質,求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.

首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)OA=ODOA=OB,判斷出∠OAD=∠ODA∠OAB=∠OBA,進而判斷出∠OBA=∠ODA+60°即可.

試題解析:解:(1)如圖1,連接BD,

∵∠BOD=120°,

∴∠BAD=120°÷2=60°,

∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,

∴∠OBA+∠ODA=180°﹣∠0BD+∠ODB﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°

故答案為:60;

2如圖2,

四邊形OBCD為平行四邊形,

∴∠BOD=∠BCD,∠OBC=∠ODC,

∵∠BAD+∠BCD=180°,∠BAD=∠B0D,

∠B0D+∠B0D=180°,

∴∠B0D=120°,∠BAD=120°÷2=60°,

∴∠OBC=∠ODC=180°﹣120°=60°,

∵∠ABC+∠ADC=180°

∴∠OBA+∠ODA=180°﹣∠OBC+∠ODC=180°﹣60°+60°=180°﹣120°=60°;

如圖3

四邊形OBCD為平行四邊形,

∴∠BOD=∠BCD∠OBC=∠ODC,

∵∠BAD+∠BCD=180°,∠BAD=∠B0D,

∠B0D+∠B0D=180°,

∴∠B0D=120°,∠BAD=120°÷2=60°

∴∠OAB=∠OAD+∠BAD=∠OAD+60°,

∵OA=ODOA=OB,

∴∠OAD=∠ODA∠OAB=∠OBA,

∴∠OBA=∠ODA+60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B在直線l上,AB=10cm,⊙B的半徑為1cm,點C在直線l上,過點C作直線CD∠DCB=30°,直線CDA點出發(fā)以每秒4cm的速度自左向右平行運動,與此同時,⊙B的半徑也不斷增大,其半徑r(cm)與時間t(秒)之間的關系式為r=1+t(t≥0),當直線CD出發(fā)________秒直線CD恰好與⊙B相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點,以CE為直徑作O,AB與O相切于點D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(a+2)x2﹣2ax+a=0有兩個不相等的實數(shù)根x1和x2, 拋物線y=x2﹣(2a+1)x+2a﹣5與x軸的兩個交點分別為位于點(2,0)的兩旁,若|x1|+|x2|=2,則a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠A=25°,以點C為圓心,BC為半徑的圓交AB于點D,交AC于點E,則的度數(shù)為( 。

A. 25° B. 30° C. 50° D. 65°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DBC的中點,點E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:

①BE⊥EC;②BF∥CE③AB=AC;

從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解高峰時段37路公交車從總站乘該路車出行的人數(shù),隨機抽查了10個班次乘該路車人數(shù),結果如下:1625,18,27,2530,28,2925,27

(1)請求出這10個班次乘該路車人數(shù)的平均數(shù)、眾數(shù)與中位數(shù);

(2)如果37路公交車在高峰時段從總站共發(fā)出50個班次,根據(jù)上面的計算結果,估計在高峰時段從總站乘該路車出行的乘客共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形紙片,對其進行如下操作:

翻折,使得點與點重,折痕為;把翻折,使得點與點重合,折痕為 (如圖2),連結.設兩條折痕的延長線交于點

(1)請在圖2中將圖形補充完整,并求的度數(shù);

(2)四邊形是菱形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABOCAB,AC分別與⊙O相切于點D、E,若點DAB的中點則∠DOE=__________.

查看答案和解析>>

同步練習冊答案