【題目】寧波火車站北廣場將于2015年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務?

【答案】
(1)解:設B花木數(shù)量為x棵,則A花木數(shù)量是(2x﹣600)棵,由題意得:

x+2x﹣600=6600,

解得:x=2400,

2x﹣600=4200,

答:B花木數(shù)量為2400棵,則A花木數(shù)量是4200棵;


(2)解:設安排a人種植A花木,由題意得:

= ,

解得:a=14,

經(jīng)檢驗:a=14是原分式方程的解,

26﹣a=26﹣14=12,

答:安排14人種植A花木,12人種植B花木.


【解析】(1)首先設B花木數(shù)量為x棵,則A花木數(shù)量是(2x﹣600)棵,由題意得等量關系:種植A,B兩種花木共6600棵,根據(jù)等量關系列出方程,再解即可;(2)首先設安排a人種植A花木,由題意得等量關系:a人種植A花木所用時間=(26﹣a)人種植B花木所用時間,根據(jù)等量關系列出方程,再解即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】 閱讀理解我們知道在直角三角形中,有無數(shù)組勾股數(shù)例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個連續(xù)正整數(shù)組成的勾股數(shù).

解決問題:① 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)偶數(shù)能組成勾股數(shù)?

答: ,若存在,試寫出一組勾股數(shù): .

在無數(shù)組勾股數(shù)中,是否還存在其它的三個連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.

在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.

探索升華:是否存在銳角ABC三邊也為連續(xù)正整數(shù);且同時還滿足:∠BCA;ABC=2BAC?若存在,求出ABC三邊的長;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).

1)在圖中作出關于軸對稱的.

2)寫出點的坐標(直接寫答案).

A1_____________,B1______________,C1______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(如圖1,等邊△ABC中,DAB邊上的點,以CD為一邊,向上作等邊△EDC,連接AE.

(1)求證:△DBC≌△EAC;

(2)求證:AE∥BC;

(3)如圖2, D在邊BA的延長線上,AB=6,AD=2,試求△ABC與△EAC面積的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.

(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:△ADE∽△DCF;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關系時, 成立?并證明你的結論;
(3)如圖③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,請直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2﹣(m+3)x+9的頂點C在x軸正半軸上,一次函數(shù)y=x+3與拋物線交于A、B兩點,與x、y軸分別交于D、E兩點.

(1)求m的值;
(2)求A、B兩點的坐標;
(3)當﹣3<x<1時,在拋物線上是否存在一點P,使得△PAB的面積是△ABC面積的2倍?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關于x,y的二元一次方程組 有整數(shù)解,且點(a,b)落在雙曲線 上的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△DEC都是等腰直角三角形,C為它們的公共直角頂點,連AD,BE,F(xiàn)為線段AD的中點,連接CF

(1)如圖1,當D點在BC上時,求證:①BE=2CF,②BE⊥CF.
(2)如圖2,把△DEC繞C點順時針旋轉(zhuǎn)一個銳角,其他條件不變,問(1)中的關系是否仍然成立?如果成立請證明.如果不成立,請寫出相應的正確的結論并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假期間,某學校計劃用彩色的地面磚鋪設教學樓門前一塊矩形操場ABCD的地面.已知這個矩形操場地面的長為100m,寬為80m,圖案設計如圖所示:操場的四角為小正方形,陰影部分為四個矩形,四個矩形的寬都為小正方形的邊長,在實際鋪設的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.

(1)如果操場上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場四角的每個小正方形邊長是多少米?
(2)如果灰色地面磚的價格為每平方米30元,紅色地面磚的價格為每平方米20元,學校現(xiàn)有15萬元資金,問這些資金是否能購買所需的全部地面磚?如果能購買所學的全部地面磚,則剩余資金是多少元?如果不能購買所需的全部地面磚,教育局還應該至少給學校解決多少資金?

查看答案和解析>>

同步練習冊答案