【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.
(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.
①求證:△OCP∽△PDA;
②若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)若圖1中的點P恰好是CD邊的中點,求∠OAB的度數(shù);
(3)如圖2,在(1)的條件下,擦去折痕AO,線段OP,連結(jié)BP,動點M在線段AP⊥(點M與點F、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MN交PB于點F,作ME⊥BP于點E.試問當(dāng)點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.
【答案】見解析
【解析】
(1)①根據(jù)折疊的性質(zhì)得到∠APO=∠B=90°,根據(jù)相似三角形的判定定理證明△OCP∽△PDA;
②根據(jù)相似三角形的面積比等于相似比的平方解答;
(2)根據(jù)直角三角形的性質(zhì)得到∠DAP=30°,根據(jù)折疊的性質(zhì)解答即可;
(3)作MQ∥AB交PB于Q,根據(jù)等腰三角形的性質(zhì)和相似三角形的性質(zhì)得到EF=PB,根據(jù)勾股定理求出PB,計算即可.
解:(1)①由折疊的性質(zhì)可知,∠APO=∠B=90°,
∴∠APD+∠OPC=90°,又∠POC+∠OPC=90°,
∴∠APD=∠POC,又∠D=∠C=90°,
∴△OCP∽△PDA;
②∵△OCP與△PDA的面積比為1:4,
∴△OCP與△PDA的相似比為1:2,
∴PC=AD=4,
設(shè)AB=x,則DC=x,AP=x,DP=x﹣4,
在Rt△APD中,AP2=AD2+PD2,即x2+82=(x﹣4)2,
解得,x=10,即AB=10;
(2)∵點P是CD邊的中點,
∴DP=DC,又AP=AB=CD,
∴DP=AP,
∴∠DAP=30°,
由折疊的性質(zhì)可知,∠OAB=∠OAP=30°;
(3)EF的長度不變.
作MQ∥AB交PB于Q,
∴∠MQP=∠ABP,
由折疊的性質(zhì)可知,∠APB=∠ABP,
∴∠MQP=∠APB,
∴MP=MQ,又BN=PM,
∴MQ=BN,
∵MQ∥AB,
∴,
∴QF=FB,
∵MP=MQ,ME⊥BP,
∴PE=QE,
∴EF=PB,
由(1)得,PC=4,BC=8,
∴PB==4,
∴EF=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一出租車一天下午以銀泰城為出發(fā)地,在東西走向的馬路上營運,如果規(guī)定向東行駛為正,行車里程(單位:)依先后次序記錄如下:
,,,,,,,,,.
(1)將最后一名乘客送到目的地,出租車離銀泰城出發(fā)點多遠?在銀泰城的什么方向?
(2)若每千米的價格為元,司機一個下午的營業(yè)額為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了正方形后,數(shù)學(xué)小組的同學(xué)對正方形進行了探究,發(fā)現(xiàn):
(1)如圖1,在正方形ABCD中,點E為BC邊上任意一點(點E不與B、C重合),點F在線段AE上,過點F的直線MN⊥AE,分別交AB、CD于點M、N . 此時,有結(jié)論AE=MN,請進行證明;
(2)如圖2:當(dāng)點F為AE中點時,其他條件不變,連接正方形的對角線BD, MN 與BD交于點G,連接BF,此時有結(jié)論:BF= FG,請利用圖2做出證明.
(3)如圖3:當(dāng)點E為直線BC上的動點時,如果(2)中的其他條件不變,直線MN分別交直線AB、CD于點M、N,請你直接寫出線段AE與MN之間的數(shù)量關(guān)系、線段BF與FG之間的數(shù)量關(guān)系.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F分別是矩形ABCD的邊AD,AB上的點,若EF=EC,且EF⊥EC.
(1)求證:AE=DC;
(2)已知DC=,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A地在數(shù)軸上表示的數(shù)為-16,AB兩地相距50個單位長度.小明從A地出發(fā)去B地,以每分鐘2個單位長度的速度行進,第一次他向左1單位長度,第二次向右2單位長度,第三次再向左3單位長度,第四次又向右4單位長度…,按此規(guī)律行進.
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的右側(cè),經(jīng)過第8次行進后小明到達點P,此時點P與點B相距幾個單位長度?8次運動完成后一共經(jīng)過了幾分鐘?
(3)若經(jīng)過n次(n為正整數(shù))行進后,小明到達點Q,請你直接寫出:點Q在數(shù)軸上表示的數(shù)應(yīng)如何表示?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點,連接AF交對角線BD于點E,連接EC.
(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時,點F在線段BC上的什么位置?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac>0;②2a+b=0;③a﹣b+c>0;④b+c>0;⑤4a+2b+c<0,則其中結(jié)論正確的是( )
A. ①③⑤ B. ①②④ C. ②③⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點對應(yīng)的數(shù)分別是,,為數(shù)軸上三個動點,點從點出發(fā)速度為每秒個單位,點從點出發(fā)速度為點的倍,點從原點出發(fā)速度為每秒個單位.
若點向右運動,同時點向左運動,求多長時間點與點相距個單位?
若點同時都向右運動,求多長時間點到點的距離相等?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com