精英家教網(wǎng)如圖,在矩形ABCD中,AE⊥BD于E,S矩形=40cm2,S△ABE:S△DBA=1:5,則AE的長為(  )
A、4cmB、5cmC、6cmD、7cm
分析:根據(jù)“S△ABE:S△DBA=1:5”可以得到BE:BD=1:5,所以設BE=x,則BD=5x,ED=4x,根據(jù)射影定理表示出AB、AD,再根據(jù)S矩形=40cm2,即可求出x的值,再利用△ABD的面積等于矩形面積的一半即可求出AE.
解答:解:∵S△ABE:S△DBA=1:5,
∴BE:BD=1:5,
設BE為x,則BD為5x,∴DE=4x,
在Rt△ABD中,∵AE⊥BD于E,
∴AB2=BE•BD=5x2,
AD2=DE•BD=4x•5x=20x2,
∴S矩形=AB•AD=
5
x•
20
x=40cm2,
解得x=2cm,
∴BD=5×2=10cm,
S△ABD=
1
2
BD•AE=
1
2
×10×AE=
1
2
×40cm2,
解得AE=4cm.
故選A.
點評:本題根據(jù)面積的比求出邊長的比,再利用射影定理表示出矩形的長與寬,進一步運用面積求出對角線的長,再根據(jù)三角形的面積求出對角線上的高.本題難度較大,利用射影定理是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
(1)求y與x的函數(shù)關系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案