精英家教網 > 初中數學 > 題目詳情

【題目】勾股定理是人類最偉大的科學發(fā)現之一,在我國古算書《周髀算經》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內.若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

【答案】C

【解析】

根據勾股定理得到c2=a2+b2,根據正方形的面積公式、長方形的面積公式計算即可.

設直角三角形的斜邊長為c,較長直角邊為b,較短直角邊為a

由勾股定理得,c2=a2+b2,

陰影部分的面積=c2-b2-ac-b=a2-ac+ab=aa+b-c),

較小兩個正方形重疊部分的長=a-c-b),寬=a,

則較小兩個正方形重疊部分底面積=aa+b-c),

∴知道圖中陰影部分的面積,則一定能求出較小兩個正方形重疊部分的面積,

故選C

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數,單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5D60.567.5;E67.574.5),并依據統(tǒng)計數據繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調查的樣本容量是 ,并補全頻數分布直方圖;

2C組學生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學生大約有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,以的斜邊為邊,在的同側作正方形,,交于點,連接.若,,則________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖已知ABO的直徑,ADO于點A,C是弧EB的中點,則下列結論

OCAEECBC;③∠DAEABE;ACOE,其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件,已知生產一件A種產品用甲種原料9千克,乙種原料3千克,可獲利700元;生產一件B種產品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產品的生產件數,有哪幾種方案?請你設計出來;

(2)設生產A、B兩種產品總利潤為y元,其中一種產品生產件數為x件,試寫出y與x之間的函數關系式,并利用函數的性質說明那種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】數學老師在課堂上展示一矩形紙片,如圖,在矩形ABCD中,AB=6cm,BC=8cm.他要將此矩形做一個梯形教具,現進行如下操作:

先將矩形ABCD的點D折疊到對角線AC上的點F處,折痕為CE,再將折疊的部分裁掉;

問:(1)所裁部分DE的長;

(2)所裁成的梯形ABCE的面積是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AB是⊙O的直徑,OBC的中點DDE垂直ACE

1)求證AB=AC;

2)求證DEO的切線;

3)若AB=13,BC=10,DE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】四邊形ABCD是平行四邊形,對角線AC平分∠DAB,AC與BD相交于點O,DE⊥AB于E點.(1)求證:四邊形ABCD是菱形;

(2)若AC=8,BD=6,求DE的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABO中,ABOB,OB=,AB=1,把ABO繞點O旋轉150°后得到A1B1O,則點A1的坐標為

A.(﹣1, B.(﹣1,)或(﹣2,0) C.,﹣1)或(0,﹣2) D.,﹣1)

查看答案和解析>>

同步練習冊答案