【題目】小明去文具用品商店給同學(xué)買(mǎi)某品牌水性筆,已知甲、乙兩商店都有該品牌的水性筆且標(biāo)價(jià)都是2/支,但甲、乙兩商店的優(yōu)惠條件卻不同.

甲商店:若購(gòu)買(mǎi)不超過(guò)10支,則按標(biāo)價(jià)付款;若一次購(gòu)10支以上,則超過(guò)10支的部分按標(biāo)價(jià)的60%付款. 乙商店:按標(biāo)價(jià)的80%付款.

在水性筆的質(zhì)量等因素相同的條件下.

(1)設(shè)小明要購(gòu)買(mǎi)的該品牌筆數(shù)是x(x>10)支,請(qǐng)用含x的式子分別表示在甲、乙兩個(gè)商店購(gòu)買(mǎi)該品牌筆買(mǎi)水性筆的費(fèi)用.

(2)若小明要購(gòu)買(mǎi)該品牌筆30支,你認(rèn)為在甲、乙兩商店中,到哪個(gè)商店購(gòu)買(mǎi)比較省錢(qián)?說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)甲商店.

【解析】

(1)先求出甲商店10支水性筆的價(jià)錢(qián),然后再求出超過(guò)10支的部分的價(jià)錢(qián),然后列出代數(shù)式;乙商店每支水性筆的價(jià)錢(qián)是,那么x支的價(jià)錢(qián)是.
(2)x=30代入以上兩式即可得到答案.

(1)在甲商店需要: (),
在乙商店需要: (),
(2)當(dāng)x=30時(shí), ,,
因?yàn)?/span>,所以小明要買(mǎi)30支筆應(yīng)到甲商店買(mǎi)比較省錢(qián).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,于是我們說(shuō):的整數(shù)部分為,小數(shù)部分則可記為.則:

(1)的整數(shù)部分為________,小數(shù)部分則可記為________;

(2)已知的小數(shù)部分為,的小數(shù)部分為,那么的值是________;

(3)已知的整數(shù)部分,的小數(shù)部分,求的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題10分)某自行車(chē)廠一周計(jì)劃生產(chǎn)700輛自行車(chē),平均每天生產(chǎn)自行車(chē)100輛,由于各種原因,實(shí)際每天生產(chǎn)量與計(jì)劃每天生產(chǎn)量相比有出入。下表是某周的自行車(chē)生產(chǎn)情況(超計(jì)劃生產(chǎn)量為正、不足計(jì)劃生產(chǎn)量為負(fù),單位:輛):

星期

增減

+8

-2

-3

+16

-9

+10

-11

(1)根據(jù)記錄可知前三天共生產(chǎn)自行車(chē) 輛;

(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天生產(chǎn) 輛;

(3)若該廠實(shí)行按生產(chǎn)的自行車(chē)數(shù)量的多少計(jì)工資,即計(jì)件工資制。如果每生產(chǎn)一輛自行車(chē)就可以得人民幣60 元,超額完多成任務(wù),每超一輛可多得 15 元;若不足計(jì)劃數(shù)的,每少生產(chǎn)一輛扣 15 元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)題意,解答問(wèn)題:

(1)如圖1,已知直線y=2x+4x軸、y軸分別交于A、B兩點(diǎn),求線段AB的長(zhǎng).

(2)如圖2,類(lèi)比(1)的解題過(guò)程,請(qǐng)你通過(guò)構(gòu)造直角三角形的方法,求出點(diǎn)M(3,4)與點(diǎn)N(﹣2,﹣1)之間的距離.

(3)在(2)的基礎(chǔ)上,若有一點(diǎn)Dx軸上運(yùn)動(dòng),當(dāng)滿足DM=DN時(shí),請(qǐng)求出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明遇到下面的問(wèn)題:求代數(shù)式的最小值并寫(xiě)出取到最小值時(shí)的x值.經(jīng)過(guò)觀察式子結(jié)構(gòu)特征,小明聯(lián)想到可以用解一元二次方程中的配方法來(lái)解決問(wèn)題,具體分析過(guò)程如下:

,所以,當(dāng)x=1 時(shí),代數(shù)式有最小值是-4.

(1)請(qǐng)你用上面小明思考問(wèn)題的方法解決下面問(wèn)題.

的最小值是_______;②求的最小值

(2)小明受到上面問(wèn)題的啟發(fā),自己設(shè)計(jì)了一個(gè)問(wèn)題,并給出解題過(guò)程及結(jié)論如下:

問(wèn)題:當(dāng)x為實(shí)數(shù)時(shí),求的最小值.

解:,∴原式有最小值是5.

請(qǐng)你判斷小明的結(jié)論是否正確,并簡(jiǎn)要說(shuō)明理由.

判斷:__________,理由:____________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫(xiě)作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn),其中B點(diǎn)坐標(biāo)為(4,0),直線DE是拋物線的對(duì)稱軸,且與x軸交于點(diǎn)E,CD⊥DE于D,現(xiàn)有下列結(jié)論: ①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4
下列選項(xiàng)中選出的結(jié)論完全正確的是(

A.①②③
B.①②④
C.①③④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,折疊長(zhǎng)方形一邊AD,點(diǎn)D落在BC邊的點(diǎn)F處, 已知BC=10厘米,AB=8厘米,求FCEF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案