【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長;

(3)O的半徑.

【答案】(1)BOC=90°;(2)BE+CG =10cm;(3)OF=4.8cm.

【解析】試題分析:(1)連接OF,根據(jù)切線長定理得:BE=BFCF=CG,∠OBF=∠OBE∠OCF=∠OCG;再根據(jù)平行線性質(zhì)得到∠BOC為直角;

2)進(jìn)而由切線長定理即可得到BE+CG的長;

3)由勾股定理可求得BC的長,最后由三角形面積公式即可求得OF的長.

試題解析:(1)連接OF;根據(jù)切線長定理得:BE=BF,CF=CG∠OBF=∠OBE,∠OCF=∠OCG;

∵AB∥CD

∴∠ABC+∠BCD=180°,

∴∠OBE+∠OCF=90°,

∴∠BOC=90°;

2∵OB=6cm,OC=8cm,

∴BC=10cm

∴BE+CG=BC=10cm

3OF=48

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某文具店購進(jìn) 只兩種型號的文具進(jìn)行銷售,其進(jìn)價和售價如表:

型號

進(jìn)價(元/只)

售價(元/只)

A

10

12

B

15

23

1)該店用 元可以購進(jìn)AB兩種型號的文具各多少只?

2)在()的條件下,若把所購進(jìn)A,B兩種型號的文具全部銷售完,利潤率有沒有超過 ?請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(8,0)及在第一象限的動點P(x,y),且x+y=10,設(shè)OPA的面積為S

(1)求S關(guān)于x的函數(shù)表達(dá)式;

(2)求x的取值范圍;

(3)求S=12時P點坐標(biāo);

(4)畫出函數(shù)S的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC中,∠BAC>90°,點DBC的中點,點EAC上,將CDE沿DE折疊,使得點C恰好落在BA的延長線上的點F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。

A. AE=EF B. AB=2DE

C. ADFADE的面積相等 D. ADEFDE的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察一列數(shù):1,24,816,我們發(fā)現(xiàn),這一列數(shù)從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數(shù)從第二項起,每一項與它前一項的比都等于同一個常數(shù),這一列數(shù)就叫做等比數(shù)列,這個常數(shù)就叫做等比數(shù)列的公比.

(1)等比數(shù)列3,-12,48,的第4項是______

(2)如果一列數(shù)a1a2,a3a4,是等比數(shù)列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,則a5=_______an=______(a1q的式子表示);

(3)一個等比數(shù)列的第2項是9,第4項是36,求它的公比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點均在格點上,點B的坐標(biāo)為(1,0)

(1)畫出ABC關(guān)于x軸對稱的A1B1C1

(2)畫出將ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的A2B2C2;

(3)△A1B1C1A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;

(4)△A1B1C1A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠BOC2AOC,OD平分∠AOB,∠BOE90°,若∠AOC40°,則∠DOE的度數(shù)等于( 。

A.20°B.25°C.30°D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:各類方程的解法:求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,可得,所以x=0或x+2=0或x-1=0,所以方程:的解是x1=0,x2=-2,x3=1;

(1)問題:用“轉(zhuǎn)化”思想求方程的解

(2)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

(1) (2)

查看答案和解析>>

同步練習(xí)冊答案