【題目】將一副三角板按如圖擺放,其中△ABC為含有45度角的三角板,直線AD是等腰直角三角形ABC的對稱軸,且將△ABC分成兩個等腰直角三角形,DM、DN分別與邊AB、AC交于E、F兩點,有下列四個結論:①BD=AD=CD②△AED≌△CFD③BE+CF=EF④S四邊形AEDFAB2.其中正確結論是_____(填寫正確序號)

【答案】①②④

【解析】

根據(jù)等腰直角三角形的性質可得AD=CD=BD,故①正確,∠CAD=B=45°,根據(jù)同角的余角相等求出∠CDF=ADE,然后利用角邊角證明△ADE和△CDF全等,判斷出②正確,根據(jù)全等三角形對應邊相等可得DE=DF、BE=AF,求出AE=CF,根據(jù)BE+CF=AF+AE,利用三角形的任意兩邊之和大于第三邊可得BE+CF>EF,判斷出③錯誤;根據(jù)全等三角形的面積相等可得SADF=SBDE,從而求出S四邊形AEDF=SABD=AB2,判斷出④正確.

∵∠B=45°,AB=AC,

∴△ABC是等腰直角三角形,

∵點DBC中點,

AD=CD=BD,故①正確;

ADBC,BAD=45°,

∴∠EAD=C,

∵∠MDN是直角,

∴∠ADF+ADE=90°,

∵∠CDF+ADF=ADC=90°,

∴∠ADE=CDF,

在△ADE和△CDF中,

,

∴△ADE≌△CDF(ASA),故②正確;

DE=DF、BE=AF,

∴△DEF是等腰直角三角形,

AE=AB-BE,CF=AC-AF,

BE+CF=AF+AE

BE+CF>EF,故③錯誤;

∵△BDE≌△ADF,

SADF=SBDE,

S四邊形AEDF=SACD=AD2=AB2故④正確.

故答案為:①②④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=62°CE平分∠ACB,CD⊥ABD,DF⊥CEF,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗媽媽在網(wǎng)上做淘寶生意,專門銷售女式鞋子,一次,小麗發(fā)現(xiàn)一個進貨單上的一個信息是:A款鞋的進價比B款鞋進價多20元,花500元進A款鞋的數(shù)量和花400元進B款鞋的數(shù)量相同.

(1)問A、B款鞋的進價分別是多少元?

(2)小麗在銷售單上記錄了兩天的數(shù)據(jù)如表:

日期

A款女鞋銷量

B款女鞋銷量

銷售總額

61

12

8

2240

62

8

10

1960

請問兩種鞋的銷售價分別是多少?

(3)小麗媽媽說:“兩款鞋的利潤率相同”,請通過計算,結合(1)(2)所給信息,判斷小麗媽媽的說法是否正確,如果正確,請說明理由;如果錯誤,能否只調(diào)整其中一款的售價,使得兩款鞋的利潤率相同?能否同時調(diào)整兩款的售價,使得兩款鞋的利潤率相同?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某風景區(qū)門票價格如圖所示,某旅行社有甲、乙兩個旅行團隊,計劃在“五一”小黃金周期間到該景點游玩,兩團隊游客人數(shù)之和為120人,乙團隊人數(shù)不超過50人.設甲團隊人數(shù)為x人,如果甲、乙兩團隊分別購買門票,兩團隊門票款之和為W元.
(1)求W關于x的函數(shù)關系式,并寫出自變量x 的取值范圍;
(2)若甲團隊人數(shù)不超過100人,請說明甲、乙兩團隊聯(lián)合購票比分別購票最多可節(jié)約多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了對一顆傾斜的古杉樹AB進行保護,需測量其長度:在地面上選取一點C,測得∠ACB=45°,AC=24m,∠BAC=66.5°,(參考數(shù)據(jù): ≈1.414,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30).則這顆古杉樹AB的長約為(
A.7.27
B.16.70
C.17.70
D.18.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分別是AE,CD的中點.

(1)求證:△ABM≌△DBN;

(2)試探索BM和BN的關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標準答案的結果是常數(shù).通過計算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,五邊形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=115°,則∠BAE的度數(shù)為何?( 。

A. 115 B. 120 C. 125 D. 130

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究題
(1)問題發(fā)現(xiàn)
如圖1,△ABC和△BDE均為等邊三角形,點A,D,E在同一直線上,連接CD.填空;

①CDB的度數(shù)為;
②線段AE,CD之間的數(shù)量關系為
(2)拓展探究
如圖2,△ABC和△DBE均為等腰直角三角形,∠ABC=∠DBE=90°,點A,D,E在同一直線上,BF為△DBE中DE邊上的高,連接CD.
①求∠CDB的大小;
②請判斷線段BF,AD,CD之間的數(shù)量關系,并說明理由.
(3)解決問題
如圖3,在正方形ABCD中,AC=2 ,AE=1,CE⊥AE于E,請補全圖形,求點B到CE的距離.

查看答案和解析>>

同步練習冊答案