【題目】2016年3月完工的上海中心大廈是一座超高層地標(biāo)式摩天大樓,其高度僅次于世界排名第一的阿聯(lián)酋迪拜大廈,某人從距離地面高度263米的東方明珠球體觀光層測(cè)得上海中心大廈頂部的仰角是22.3°.已知東方明珠與上海中心大廈的水平距離約為900米,那么上海中心大廈的高度約為米(精確到1米).(參考數(shù)據(jù):sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)

【答案】632
【解析】解:如圖所示,在Rt△ACE中,∠AEC=90°,∠CAE=22.3°,AE=900,
∴CE=AE×tan22.3°=900×0.41≈369米,
∵AB=DE=263米,
∴CD=CE+DE=369+263=632(米).
故答案是:632.
先根據(jù)Rt△ACE中,∠AEC=90°,∠CAE=22.3°,AE=900,求得CE=AE×tan22.3°=900×0.41≈369米,再根據(jù)AB=DE=263米,求得CD=CE+DE=369+263=632米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠C=90°,點(diǎn)D在AC上,且CD>DA,DA=2,點(diǎn)P,Q同時(shí)從點(diǎn)D出發(fā),以相同的速度分別沿射線DC、射線DA運(yùn)動(dòng),過(guò)點(diǎn)Q作AC的垂線段QR,使QR=PQ,連接PR,當(dāng)點(diǎn)Q到達(dá)點(diǎn)A時(shí),點(diǎn)P,Q同時(shí)停止運(yùn)動(dòng).設(shè)PQ=x,△PQR與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤ , <x≤m時(shí),函數(shù)的解析式不同).

(1)填空:n的值為_(kāi)__;
(2)求S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=2x2﹣mx﹣m2
(1)求證:對(duì)于任意實(shí)數(shù)m,二次函數(shù)y=2x2﹣mx﹣m2的圖象與x軸總有公共點(diǎn);
(2)若這個(gè)二次函數(shù)圖象與x軸有兩個(gè)公共點(diǎn)A,B,且B點(diǎn)坐標(biāo)為(1,0),求A點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校興趣小組想測(cè)量一座大樓AB的高度.如圖6,大樓前有一段斜坡BC,已知BC的長(zhǎng)為12米,它的坡度i=1: .在離C點(diǎn)40米的D處,用測(cè)角儀測(cè)得大樓頂端A的仰角為37°,測(cè)角儀DE的高為1.5米,求大樓AB的高度約為多少米?(結(jié)果精確到0.1米) (參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,點(diǎn)A(4,0)是拋物線y=ax2+2x﹣c上的一點(diǎn),將此拋物線向下平移6個(gè)單位后經(jīng)過(guò)點(diǎn)B(0,2),平移后所得的新拋物線的頂點(diǎn)記為C,新拋物線的對(duì)稱軸與線段AB的交點(diǎn)記為P.

(1)求平移后所得到的新拋物線的表達(dá)式,并寫(xiě)出點(diǎn)C的坐標(biāo);
(2)求∠CAB的正切值;
(3)如果點(diǎn)Q是新拋物線對(duì)稱軸上的一點(diǎn),且△BCQ與△ACP相似,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,電線桿CD上的C處引拉線CE,CF固定電線桿,在離電線桿6米的B處安置測(cè)角儀(點(diǎn)B,E,D在同一直線上),在A處測(cè)得電線桿上C處的仰角為30°,已知測(cè)角儀的高AB=1.5米,BE=2.3米,求拉線CE的長(zhǎng),(精確到0.1米)參考數(shù)據(jù) ≈1.41, ≈1.73.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,點(diǎn)D,E分別在邊AB,BC上,BABD=BCBE
(1)求證:DEAB=ACBE;
(2)如果AC2=ADAB,求證:AE=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為美化城市,有關(guān)部門(mén)決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配成A、B兩種園藝造型共60個(gè),擺放于主干街道的兩側(cè),搭配每個(gè)造型所需花卉數(shù)量的情況如下表所示,結(jié)合上述信息,解答下列問(wèn)題:

造型花卉

A

80

40

B

50

70


(1)符合題意的搭配方案有幾種?
(2)如果搭配一個(gè)A種造型的成本為600元,搭配一個(gè)B種造型的成本為800元,試說(shuō)明選用那種方案成本最低?最低成本為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC是直徑,點(diǎn)E是AB的中點(diǎn),延長(zhǎng)EO交⊙O于D點(diǎn),若BC=DC,AB=2 ,求 的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案