【題目】如圖,EF過矩形ABCD對角線的交點O,且分別交AB、CD于E、F,那么陰影部分的面積是矩形ABCD的面積是多少?
【答案】【解答】∵四邊形為矩形,
∴OB=OD=OA=OC,
在△EBO與△FDO中,∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,△EBO≌△FDO,
∴陰影部分的面積=S△AEO+S△EBO=S△AOB ,
∵△AOB與△ABC同底且△AOB的高是△ABC高的 ,
∴S△AOB=S△OBC= S矩形ABCD .
【解析】本題主要根據(jù)矩形的性質(zhì),得△EBO≌△FDO,再由△AOB與△OBC同底等高,得出結(jié)論.本題考查矩形的性質(zhì),矩形具有平行四邊形的性質(zhì),又具有自己的特性,要注意運用矩形具備而一般平行四邊形不具備的性質(zhì).
【考點精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識,掌握矩形的四個角都是直角,矩形的對角線相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球.怎樣估算不同顏色球的數(shù)量?
操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進行摸球試驗.摸球試驗的要求:先攪拌均勻,每次隨機摸出一個球,放回盒中,再繼續(xù).
活動結(jié)果:摸球試驗一共做了50次,統(tǒng)計結(jié)果如下表:
球的顏色 | 無記號 | 有記號 | ||
紅色 | 黃色 | 紅色 | 黃色 | |
摸到的次數(shù) | 18 | 28 | 2 | 2 |
推測計算.由上述的摸球試驗可推算:
(1)盒中紅球、黃球各占總球數(shù)的百分比是多少?
(2)盒中有紅球多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由四舍五入得到的地球半徑約為6.4×103km;精確到( 。
A. 1000 km B. 100 km C. 0.1 km D. 0.01 km
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com