【題目】【問題提出】
用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
【問題探究】
不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過試驗(yàn)、觀察、類比、最后歸納、猜測得出結(jié)論.
【探究一】
(1)用3根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
此時,顯然能搭成一種等腰三角形.
所以,當(dāng)n=3時,m=1.
(2)用4根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.
所以,當(dāng)n=4時,m=0.
(3)用5根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.
若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.
所以,當(dāng)n=5時,m=1.
(4)用6根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.
若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.
所以,當(dāng)n=6時,m=1.
綜上所述,可得:表①
【探究二】
(1)用7根相同的木棒搭一個三角形,能搭成多少種不同的三角形?
(仿照上述探究方法,寫出解答過程,并將結(jié)果填在表②中)
(2)用8根、9根、10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
表②
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,…
【問題解決】:
用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)
表③
【問題應(yīng)用】:
用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)
【答案】【探究二】:2;1;2;2;【問題解決】:k;k﹣1;k;k;【問題應(yīng)用】:672.
【解析】
試題分析:探究二:仿照探究一的方法進(jìn)行分析即可;
問題解決:根據(jù)探究一、二的結(jié)果總結(jié)規(guī)律填表即可;
問題應(yīng)用:根據(jù)規(guī)律進(jìn)行計算求出m的值.
試題解析:(1)用7根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
此時,能搭成二種等腰三角形,即分成2根木棒、2根木棒和3根木棒,則能搭成一種等腰三角形
分成3根木棒、3根木棒和1根木棒,則能搭成一種等腰三角形
當(dāng)n=7時,m=2.
(2)用8根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
分成2根木棒、2根木棒和4根木棒,則不能搭成一種等腰三角形,分成3根木棒、3根木棒和2根木棒,則能搭成一種等腰三角形,所以,當(dāng)n=8時,m=1.
用9根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
分成3根木棒、3根木棒和3根木棒,則能搭成一種等腰三角形
分成4根木棒、4根木棒和1根木棒,則能搭成一種等腰三角形
所以,當(dāng)n=9時,m=2.
用10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?
分成3根木棒、3根木棒和4根木棒,則能搭成一種等腰三角形
分成4根木棒、4根木棒和2根木棒,則能搭成一種等腰三角形
所以,當(dāng)n=10時,m=2.
故答案為:2;1;2;2.
問題解決:由規(guī)律可知,答案為:k;k﹣1;k;k.
問題應(yīng)用:2016÷4=504,504﹣1=503,當(dāng)三角形是等邊三角形時,面積最大,2016÷3=672,∴用2016根相同的木棒搭一個三角形,能搭成503種不同的等腰三角形,其中面積最大的等腰三角形每腰用672根木棒.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠ACB=90°.
(1)尺規(guī)作圖:作⊙C,使它與AB相切于點(diǎn)D,與AC相交于點(diǎn)E,保留作圖痕跡,不寫作法,請標(biāo)明字母;
(2)在你按(1)中要求所作的圖中,若BC=3,∠A=30°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線經(jīng)過點(diǎn)A(2,﹣3)和B(4,5).
(1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)將拋物線沿x軸翻折,得到圖象G1,求圖象G1的表達(dá)式;
(3)設(shè)B點(diǎn)關(guān)于對稱軸的對稱點(diǎn)為E,拋物線G2:(a≠0)與線段EB恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線”的尺規(guī)作圖過程:
已知:直線l和l外一點(diǎn)P.(如圖1)
求作:直線l的垂線,使它經(jīng)過點(diǎn)P.
作法:如圖2
(1)在直線l上任取兩點(diǎn)A,B;
(2)分別以點(diǎn)A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點(diǎn)Q;
(3)作直線PQ.
所以直線PQ就是所求的垂線.
請回答:該作圖的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015-2016賽季中國男子籃球職業(yè)聯(lián)賽(即CBA)激戰(zhàn)正酣,浙江廣廈隊(duì)表現(xiàn)不俗,暫居榜首,馬布里領(lǐng)銜的衛(wèi)冕冠軍北京首鋼隊(duì)?wèi)?zhàn)績不佳,截止12月23日,在前21輪比賽中,積35分位列第七位,按比賽規(guī)則,勝一場得2分,負(fù)一場得1分,那么截止12月23日北京首鋼隊(duì)共勝了多少場?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF,CD相交于點(diǎn)0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)
(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標(biāo)語,其具體信息匯集如下:
如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標(biāo)語CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年春節(jié)期間,云南接待游客約2882萬人,旅游收入約193億元,其中2882萬用科學(xué)記數(shù)法表示為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com