【題目】設(shè)實(shí)數(shù)a,b,c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x-a|+|x+b|+|x-c|的最小值為( )
A. B. |b| C. a+b D. -c-a
【答案】C
【解析】
根據(jù)ac<0可知,a,c異號(hào),再根據(jù)a>b>c,以及|c|<|b|<|a|,即可確定a,-b, c在數(shù)軸上的位置,而|x-a|+|x+b|+|x-c|表示數(shù)軸上的點(diǎn)到a,-b,c三點(diǎn)的距離的和,根據(jù)數(shù)軸即可確定.
∵ac<0,
∴a,c異號(hào),
∴a<0,c>0
又∵a>b>c,以及|c|<|b|<|a|,
∴a>b>0>c>-b,
又∵|x-a|+|x+b|+|x-c|表示到a,-b,c三點(diǎn)的距離的和,
當(dāng)x在表示c點(diǎn)的數(shù)的位置時(shí)距離最小,
即|x-a|+|x+b|+|x-c|最小,最小值是a與-b之間的距離,即a+b.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于點(diǎn)M,交BE于點(diǎn)G,AD平分∠MAC,交BC于點(diǎn)D,交BE于點(diǎn)F.
(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;
(2)若∠C=30°,圖中是否存在等邊三角形?若存在,請(qǐng)寫出來并證明;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l上有一點(diǎn)O,點(diǎn)A,B同時(shí)從O出發(fā),在直線l上分別向左,向右作勻速運(yùn)動(dòng),且A,B的速度之比是1:2,設(shè)運(yùn)動(dòng)時(shí)間為ts,
(1)當(dāng)t=2s時(shí),AB=24cm,此時(shí),
①在直線l上畫出A,B兩點(diǎn)運(yùn)動(dòng)2s時(shí)的位置,并回答點(diǎn)A運(yùn)動(dòng)的速度是 cm/s,點(diǎn)B的運(yùn)動(dòng)速度是 cm/s;
②若點(diǎn)P為直線l上一點(diǎn),且PA=OP+PB,求 的值;
(2)在(1)的條件下,若A,B同時(shí)按原速度向左運(yùn)動(dòng),再經(jīng)過幾秒,OA=3OB?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接對(duì)角線互相垂直的四邊形的各邊中點(diǎn),所得圖形一定是( )
A. 正方形 B. 菱形 C. 矩形 D. 梯形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為(1,2),(-2,3),(-1,0),把它們的橫坐標(biāo)和縱坐標(biāo)都擴(kuò)大到原來的2倍,得到點(diǎn) , , .下列說法正確的是( 。
A.△ 與△ABC是位似圖形,位似中心是點(diǎn)(1,0)
B.△ 與△ABC是位似圖形,位似中心是點(diǎn)(0,0)
C.△ 與△ABC是相似圖形,但不是位似圖形
D.△ 與△ABC不是相似圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)在y軸的負(fù)半軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com