【題目】如圖:已知ABC中,AB5BC3,AC4,PQABP點(diǎn)在AC上(與A、C不重合),QBC上.

1)當(dāng)PQC的面積與四邊形PABQ的面積相等時(shí),求CP的長(zhǎng);

2)當(dāng)PQC的周長(zhǎng)與四邊形PABQ的周長(zhǎng)相等時(shí),求CP的長(zhǎng);

3)試問(wèn):在AB上是否存在一點(diǎn)M,使得PQM為等腰直角三角形?若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;若存在,請(qǐng)求出PQ的長(zhǎng).

【答案】1 ;(2 ;(3)存在,.

【解析】

1)由于PQAB,故PQC∽△ABC,當(dāng)PQC的面積與四邊形PABQ的面積相等時(shí),CPQCAB的面積比為12,根據(jù)相似三角形的面積比等于相似比的平方,可求出CP的長(zhǎng);

2)由于PQC∽△ABC,根據(jù)相似三角形的性質(zhì),可用CP表示出PQCQ的長(zhǎng),進(jìn)而可表示出AP、BQ的長(zhǎng).根據(jù)CPQ和四邊形ABQP的周長(zhǎng)相等,可將相關(guān)的各邊相加,即可求出CP的長(zhǎng);

3)因?yàn)椴荒艽_定哪個(gè)角是直角,故應(yīng)分類(lèi)討論.

①當(dāng)∠MPQ90°,且PMPQ時(shí).因?yàn)?/span>CPQ∽△CAB,根據(jù)相似三角形邊長(zhǎng)的比等于高的比,可求出PQ的值;

②∠PQM90°時(shí)與①相同;

③當(dāng)∠PMQ90°,且PMMQ時(shí),過(guò)MMEPQ,則MEPQ,根據(jù)相似三角形邊長(zhǎng)的比等于高的比,可求出PQ的值.

1)∵PQAB,

∴△PQC∽△ABC,

SPQCS四邊形PABQ

SPQCSABC12,

CPCA2;

2)∵△PQC∽△ABC

,

,

CQCP,

同理:PQCP

lPCQCP+PQ+CQCP+CP+CP3CP,

I四邊形PABQPA+AB+BQ+PQ,

4CP+AB+3CQ+PQ

4CP+5+3CP+CP,

12CP,

12CP3CP

CP12,

CP

3)∵AC4,AB5,BC3

∴△ABCAB邊上的高為,

①當(dāng)∠MPQ90°,且PMPQ時(shí),

∵△CPQ∽△CAB

,

PQ;

②當(dāng)∠PQM90°時(shí)與①相同;

③當(dāng)∠PMQ90°,且PMMQ時(shí),

過(guò)MMEPQ,則MEPQ,

∴△CPQ的高為MEPQ

,

,

PQ

綜合①②③可知:點(diǎn)M存在,PQ的長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線(xiàn)的對(duì)稱(chēng)軸是下列結(jié)論中:

;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線(xiàn)上,則

其中正確的有  

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保證車(chē)輛行駛安全,現(xiàn)在公路旁設(shè)立一檢測(cè)點(diǎn)A觀測(cè)行駛的汽車(chē)是否超速.如圖,檢測(cè)點(diǎn)A到公路的距離是24米,在公路上取兩點(diǎn)BC,使得∠ACB=30°,∠ABC=120°

(1)BC的長(zhǎng)(結(jié)果保留根號(hào));

(2)已知該路段限速為45千米/小時(shí),若測(cè)得某汽車(chē)從BC用時(shí)2秒,這輛汽車(chē)是否超速?說(shuō)明理由.(參考數(shù)據(jù):1.7,1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù)y的圖象在第一象限上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為邊作等邊ABC使點(diǎn)C落在第二象限,且邊BCx軸于點(diǎn)D,若ACDABD的面積之比為12,則點(diǎn)C的坐標(biāo)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2cm的正方形ABCD沿其對(duì)角線(xiàn)AC剪開(kāi),再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動(dòng)的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是      度;

(2)若連結(jié)EF,則△AEF 三角形;并證明;

(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的弦AB4cm,點(diǎn)C為優(yōu)弧上的動(dòng)點(diǎn),且∠ACB30°.若弦DE經(jīng)過(guò)弦AC、BC的中點(diǎn)M、N,則DM+EN的最大值是_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地有一座圓弧形拱橋,

(1)如圖1,請(qǐng)用尺規(guī)作出圓弧所在圓的圓心O;

(2)如圖2,過(guò)點(diǎn)O作OC⊥AB于點(diǎn)D,交圓弧于點(diǎn)C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過(guò)拱橋,請(qǐng)通過(guò)計(jì)算說(shuō)明此貨船能否順利通過(guò)這座拱橋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長(zhǎng)恰與另一塊等腰直角三角板ODC的斜邊OC的長(zhǎng)相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過(guò)點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過(guò)A的雙曲線(xiàn)的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長(zhǎng),求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點(diǎn)A的坐標(biāo)為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.

(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長(zhǎng).

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動(dòng)點(diǎn)M在線(xiàn)段AP上(不與點(diǎn)P,A重合),動(dòng)點(diǎn)N在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)動(dòng)點(diǎn)M,N在移動(dòng)的過(guò)程中,線(xiàn)段EF的長(zhǎng)度是否發(fā)生變化?若不變,求出線(xiàn)段EF的長(zhǎng)度;若變化,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案