如圖,在△ABC中,已知AB=BC=CA=4 cm,AD⊥BC于D.點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1 cm/s;點Q沿CA、AB向終點B運動,速度為2 cm/s.設它們運動的時間為x(s).
(1)求x為何值時,PQ⊥AC;
(2)設△PQD的面積為y(cm2),當0<x<2時,求y與x的函數(shù)關(guān)系式;
(3)當0<x<2時,求證:AD平分△PQD的面積;
(4)探索以PQ為直徑的圓與AC的位置關(guān)系.請寫出相應位置關(guān)系的x的取值范圍(不要求寫出過程).
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com