如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,4),頂點(diǎn)為(1,).

(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,設(shè)拋物線的對稱軸與x軸交于點(diǎn)D,試在對稱軸上找出點(diǎn)P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點(diǎn)P的坐標(biāo).
(3)如圖2,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),分別連接AC、BC,過點(diǎn)E作EF∥AC交線段BC于點(diǎn)F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時(shí)E點(diǎn)的坐標(biāo);若不存在,請說明理由.

(1);(2)滿足條件的點(diǎn)P的坐標(biāo)有:、、
(3)存在點(diǎn)E能使S有最大值,最大值為3,此時(shí)點(diǎn)E的坐標(biāo)為(1,0).

解析試題分析:本題考查了二次函數(shù)的綜合運(yùn)用.其中涉及到的知識(shí)點(diǎn)有拋物線的頂點(diǎn)公式和三角形的面積求法,在動(dòng)點(diǎn)問題時(shí)要注意分情況討論.
(1)已知拋物線的頂點(diǎn)坐標(biāo)可設(shè)拋物線的解析式為:,將點(diǎn)C(0,4)代入即可求解.
(2)求滿足使△CDP為等腰三角形的動(dòng)點(diǎn)P的坐標(biāo),一般地,當(dāng)一等腰三角形的兩腰不明確時(shí),應(yīng)分類討論如下:如圖①當(dāng)PC=PD時(shí):過點(diǎn)C作CE⊥DP交于點(diǎn)E,設(shè)CP=DP=a,由勾股定理易求,所以點(diǎn);如圖②當(dāng)DC=DP時(shí):即以點(diǎn)D為圓心,以CD的長為半徑作圓,可以發(fā)現(xiàn)在對稱軸上有兩個(gè)符合條件的點(diǎn),因?yàn)镃D=,故DP=.所以點(diǎn)P的坐標(biāo)為,;如圖③當(dāng)CD=CP時(shí):點(diǎn)C在DP的垂直平分線上,過點(diǎn)C作CE⊥DP交于點(diǎn)E,此時(shí)易得DE=PE=4,所以點(diǎn)P的坐標(biāo)為.
(3)先由求得拋物線與坐標(biāo)軸的交點(diǎn)坐標(biāo),進(jìn)而求得直線AC的解析式為.由于EF∥AC,可由平移設(shè)出直線EF的解析式為,此時(shí)可求得點(diǎn)E的坐標(biāo)為.進(jìn)而列方程組求出點(diǎn)F的坐標(biāo),最后利用得出一個(gè)關(guān)于b的二次函數(shù),利用二次函數(shù)性質(zhì)可求出是否存在滿足條件的點(diǎn)E.

試題解析:
(1)解∵拋物線的頂點(diǎn)為
∴可設(shè)拋物線的函數(shù)關(guān)系式為
∵拋物線與y軸交于點(diǎn)C(0,4),
    解得
∴所求拋物線的函數(shù)關(guān)系式為
(2)解:滿足條件的點(diǎn)P的坐標(biāo)有:、
(3)解:存在點(diǎn)E能使S有最大值,最大值為3,此時(shí)點(diǎn)E的坐標(biāo)為(1,0).
如圖,令
解得x1=-2,x2=4.
∴拋物線與x軸的交點(diǎn)為A(-2,0) ,B (4,0) .
∵A(-2,0),B(4,0),C(0,4),
∴直線AC的解析式為,
直線BC的解析式為
∵EF∥AC,
∴可設(shè)直線EF的解析式為,(-2<x<4)
,解得,
∴點(diǎn)E的坐標(biāo)為
∴BE=
解方程組 得,
∴點(diǎn)F的坐標(biāo)為

整理得
∴當(dāng)時(shí),S有最大值3,此時(shí)點(diǎn)E的坐標(biāo)為(1,0).

考點(diǎn):1、求二次函數(shù)解析式;2、動(dòng)點(diǎn)問題-滿足等腰三角形的點(diǎn)的坐標(biāo);3、利用二次函數(shù)求最值的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)

(1)求拋物線頂點(diǎn)M的坐標(biāo);
(2)設(shè)拋物線與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),求A,B,C的坐標(biāo)(點(diǎn)A在點(diǎn)B的左側(cè)),并畫出函數(shù)圖象的大致示意圖;
(3)根據(jù)圖象,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y件與銷售單價(jià)x元符合一次函數(shù)y=kx+b,且x=65時(shí),y="55" 當(dāng)x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W元與銷售單價(jià)x之間的關(guān)系式;銷售單間定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價(jià)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=3x和y=2x分別與直線x=2相交于點(diǎn)A、B,將拋物線y=x2沿線段OB移動(dòng),使其頂點(diǎn)始終在線段OB上,拋物線與直線x=2相交于點(diǎn)C,設(shè)△AOC的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

將進(jìn)貨單價(jià)為30元的商品按40元出售時(shí),每天賣出500件。據(jù)市場調(diào)查發(fā)現(xiàn),如果這種商品每件漲價(jià)1元,其每天的銷售量就減少10件。
(1)要使得每天能賺取8000元的利潤,且盡量減少庫存,售價(jià)應(yīng)該定為多少?
(2)售價(jià)定為多少時(shí),每天獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y1=-x2+3與x軸交于A、B兩點(diǎn),與直線y2=-x+b相交于B、C兩點(diǎn).

(1)求直線BC的解析式和點(diǎn)C的坐標(biāo);
(2)若對于相同的x,兩個(gè)函數(shù)的函數(shù)值滿足y1≥y2,則自變量x的取值范圍是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,已知拋物線y=-x2+bx+c經(jīng)過點(diǎn)A(1,0),B(-3,0)兩點(diǎn),且與y軸交于點(diǎn)C.

(1) 求b,c的值。
(2)在第二象限的拋物線上,是否存在一點(diǎn)P,使得△PBC的面積最大?求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若不存在,請說明理由.
(3) 如圖2,點(diǎn)E為線段BC上一個(gè)動(dòng)點(diǎn)(不與B,C重合),經(jīng)過B、E、O三點(diǎn)的圓與過點(diǎn)B且垂直于BC的直線交于點(diǎn)F,當(dāng)△OEF面積取得最小值時(shí),求點(diǎn)E坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)A (2,4) 和點(diǎn)B (1,0)都在拋物線上.

(1)求m、n;
(2)向右平移上述拋物線,記平移后點(diǎn)A的對應(yīng)點(diǎn)為A′,點(diǎn)B的對應(yīng)點(diǎn)為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達(dá)式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點(diǎn)為C,試在x軸上找一個(gè)點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線 a≠0)的對稱軸是直線l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對應(yīng)值如下表所示:

x

―1
0
3



0

0

(1)求y1與x之間的函數(shù)關(guān)系式;
(2)若經(jīng)過點(diǎn)T(0,t)作垂直于y軸的直線l′,A為直線l′上的動(dòng)點(diǎn),線段AM的垂直平分線交直線l于點(diǎn)B,點(diǎn)B關(guān)于直線AM的對稱點(diǎn)為P,記P(x,y2).
①求y2與x之間的函數(shù)關(guān)系式;
②當(dāng)x取任意實(shí)數(shù)時(shí),若對于同一個(gè)x,有y1<y2恒成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案