下列各題說法中,正確的是   (    )

A.正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)     B.整數(shù)和分數(shù)統(tǒng)稱有理數(shù)

C.正整數(shù)和負整數(shù)統(tǒng)稱為整數(shù)     D.分數(shù)包括負分數(shù)和負小數(shù)

 

答案:B
提示:

零是整數(shù),也是有理數(shù),整數(shù)和分數(shù)都是有理數(shù)。

 


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

下列各題中解題方法或說法正確的個數(shù)有(  )
(1)用換元法解方程
x
x-1
+
2x-2
x
+3=0,設
x
x-1
=y,則原方程可化為y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非負數(shù)的和為零解,則原式可以化為(x-2)2+
y-6

=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個數(shù)有( )
(1)用換元法解方程++3=0,設=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+=0,求x、y的值.用非負數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《分式方程》(01)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個數(shù)有( )
(1)用換元法解方程++3=0,設=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《無理數(shù)與實數(shù)》(02)(解析版) 題型:選擇題

(2002•十堰)下列各題中解題方法或說法正確的個數(shù)有( )
(1)用換元法解方程++3=0,設=y,則原方程可化為y++3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+=0,求x、y的值.用非負數(shù)的和為零解,則原式可以化為(x-2)2+
=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案