【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5.OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=2 ,求⊙O的半徑和線段PB的長;
(3)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
【答案】
(1)解:AB=AC,理由如下:
連接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC
(2)解:延長AP交⊙O于D,連接BD,
設(shè)圓半徑為r,則OP=OB=r,PA=5﹣r,
則AB2=OA2﹣OB2=52﹣r2,
AC2=PC2﹣PA2= ﹣(5﹣r)2,
∴52﹣r2= ﹣(5﹣r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直徑,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴ = ,
∴ = ,
解得:PB= .
∴⊙O的半徑為3,線段PB的長為
(3)解:作出線段AC的垂直平分線MN,作OE⊥MN,則可以推出OE= AC= AB=
又∵圓O與直線MN有交點,
∴OE= ≤r,
≤2r,
25﹣r2≤4r2,
r2≥5,
∴r≥ ,
又∵圓O與直線相離,
∴r<5,
即 ≤r<5
【解析】(1)連接OB,根據(jù)切線的性質(zhì)和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根據(jù)等腰三角形的判定推出即可;(2)延長AP交⊙O于D,連接BD,設(shè)圓半徑為r,則OP=OB=r,PA=5﹣r,根據(jù)AB=AC推出52﹣r2= ﹣(5﹣r)2 , 求出r,證△DPB∽△CPA,得出 = ,代入求出即可;(3)根據(jù)已知得出Q在AC的垂直平分線上,作出線段AC的垂直平分線MN,作OE⊥MN,求出OE<r,求出r范圍,再根據(jù)相離得出r<5,即可得出答案.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解學生家長對孩子用手機的態(tài)度問題,隨機抽取了100名家長進行問卷調(diào)查,每位學生家長只有一份問卷,且每份問卷僅表明一種態(tài)度(這100名家長的問卷真實有效),將這100份問卷進行回收整理后,繪制了如下兩幅不完整的統(tǒng)計圖.
(1)“從來不管”的問卷有份,在扇形圖中“嚴加干涉”的問卷對應的圓心角為 .
(2)請把條形圖補充完整.
(3)若該校共有學生2000名,請估計該校對手機問題“嚴加干涉”的家長有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綠豆在相同條件下的發(fā)芽試驗,結(jié)果如下表所示:
每批粒數(shù)n | 100 | 300 | 400 | 600 | 1000 | 2000 | 3000 |
發(fā)芽的粒數(shù)m | 96 | 282 | 382 | 570 | 948 | 1912 | 2850 |
發(fā)芽的頻率 | 0.960 | 0.940 | 0.955 | 0.950 | 0.948 | 0.956 | 0.950 |
則綠豆發(fā)芽的概率估計值是 ( )
A.0.96
B.0.95
C.0.94
D.0.90
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用2小時,若船速為26千米/時,水速為3千米/時,求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明有2件上衣,分別為紅色和藍色,有3條褲子,其中2條為藍色、1條為棕色.小明任意拿出1件上衣和1條褲子穿上.請用畫樹狀圖或列表的方法列出所有可能出現(xiàn)的結(jié)果,并求小明穿的上衣和褲子恰好都是藍色的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘核潛艇在海面DF下600米A點處測得俯角為30°正前方的海底C點處有黑匣子,繼續(xù)在同一深度直線航行1464米到B點處測得正前方C點處的俯角為45°.求海底C點處距離海面DF的深度(結(jié)果精確到個位,參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在3×3的方格紙中,點A、B、C、D、E、F分別位于如圖所示的小正方形的頂點上.
(1)從A、D、E、F四個點中任意取一點,以所取的這一點及點B、C為頂點畫三角形,則所畫三角形是等腰三角形的概率是;
(2)從A、D、E、F四個點中先后任意取兩個不同的點,以所取的這兩點及點B、C為頂點畫四邊形,求所畫四邊形是平行四邊形的概率是(用樹狀圖或列表法求解).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某測量船位于海島P的北偏西60°方向,距離海島100海里的A處,它沿正南方向航行一段時間后,到達位于海島P的西南方向上的B處,求測量船從A處航行到B處的路程(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解 如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點Bn與點C重合,無論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點B與點C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時點B1與點C重合.
探究發(fā)現(xiàn)
(1)△ABC中,∠B=2∠C,經(jīng)過兩次折疊,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小麗經(jīng)過三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請?zhí)骄俊螧與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系.根據(jù)以上內(nèi)容猜想:若經(jīng)過n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為 應用提升
(3)小麗找到一個三角形,三個角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個角都是此三角形的好角. 請你完成,如果一個三角形的最小角是4°,試求出三角形另外兩個角的度數(shù),使該三角形的三個角均是此三角形的好角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com