【題目】某單位需采購一批商品,購買甲商品10件和乙商品15件需資金350元,而購買甲商品15件和乙商品10件需要資金375元.
求甲、乙商品每件各多少元?
本次計(jì)劃采購甲、乙商品共30件,計(jì)劃資金不超過460元,
最多可采購甲商品多少件?
若要求購買乙商品的數(shù)量不超過甲商品數(shù)量的,請(qǐng)給出所有購買方案,并求出該單位購買這批商品最少要用多少資金.
【答案】(1)甲商品每件17元,乙商品每件12元;(2)①最多可采購甲商品20件;②購買方案有四種,
方案一:甲商品20件,乙商品10件,此時(shí)花費(fèi)為:20×17+10×12=460(元);
方案二:甲商品19件,乙商品11件,此時(shí)花費(fèi)為:19×17+11×12=455(元);
方案三:甲商品18件,乙商品12件,此時(shí)花費(fèi)為:18×17+12×12=450(元);
方案四:甲商品17件,乙商品13件,此時(shí)花費(fèi)為:17×17+13×12=445(元).
即購買甲商品17件,乙商品13件時(shí)花費(fèi)最少,最少要用445元.
【解析】
(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,從而可以解答本題;
(2)根據(jù)題意可以列出相應(yīng)的不等式,從而可以解答本題.
解:(1)設(shè)甲商品每件x元,乙商品每件y元,
,
解得,,
即甲商品每件17元,乙商品每件12元;
(2)①設(shè)采購甲商品m件,
17m+12(30-m)≤460,
解得,m≤20,
即最多可采購甲商品20件;
②由題意可得,
,
解得,,
∴購買方案有四種,
方案一:甲商品20件,乙商品10件,此時(shí)花費(fèi)為:20×17+10×12=460(元),
方案二:甲商品19件,乙商品11件,此時(shí)花費(fèi)為:19×17+11×12=455(元),
方案三:甲商品18件,乙商品12件,此時(shí)花費(fèi)為:18×17+12×12=450(元),
方案四:甲商品17件,乙商品13件,此時(shí)花費(fèi)為:17×17+13×12=445(元).
即購買甲商品17件,乙商品13件時(shí)花費(fèi)最少,最少要用445元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要建一個(gè)面積為140平方米的倉庫,倉庫的一邊靠墻,這堵墻長16米;在與墻平行的一邊,要開一扇2米寬的門.已知圍建倉庫的現(xiàn)有木板材料可使新建板墻的總長為32米,那么這個(gè)倉庫設(shè)計(jì)的長和寬應(yīng)分別為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3分別交x軸、y軸于點(diǎn)A、B,P是拋物線y=﹣x2+2x+5上的一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為a,過點(diǎn)P且平行于y軸的直線交直線y=﹣x+3于點(diǎn)Q,則當(dāng)PQ=BQ時(shí),a的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列問題,列出關(guān)于的方程,并將其化為一元二次方程的一般形式
(1)有一個(gè)三位數(shù),它的個(gè)位數(shù)字比十位數(shù)字大,十位數(shù)字比百位數(shù)字小,三個(gè)數(shù)字的平方和的倍比這個(gè)三位數(shù)小,求這個(gè)三位數(shù).
(2)如果一個(gè)直角三角形的兩條直角邊長之和為,面積為,求它的兩條直角邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,點(diǎn)D在邊BC上與B、C不重合,四邊形ADEF為正方形,過點(diǎn)F作,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:;::2;;,其中正確的結(jié)論的個(gè)數(shù)是()
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊內(nèi)一點(diǎn)將繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)得,連接已知.
求證:是等邊三角形;
當(dāng)時(shí),試判斷的形狀,并說明理由;
探究:當(dāng)為多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),它的圖象經(jīng)過點(diǎn).
若該圖象與軸的一個(gè)交點(diǎn)為.
①求二次函數(shù)的表達(dá)式;
②出該二次函數(shù)的大致圖象,并借助函數(shù)圖象,求不等式的解集;
當(dāng)取,時(shí),二次函數(shù)圖象與軸正半軸分別交于點(diǎn),點(diǎn).如果點(diǎn)在點(diǎn)的右邊,且點(diǎn)和點(diǎn)都在點(diǎn)的右邊.試比較和的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)1小時(shí)后到達(dá)南亞所(景點(diǎn)),游玩一段時(shí)間后按原速前往湖光巖.小明離家1小時(shí)50分鐘,媽媽駕車沿相同路線前往湖光巖,如圖是他們離家的路程y(km)與小明離家時(shí)間x(h)的函數(shù)圖象.
(1)求小明騎車的速度和在南亞所游玩的時(shí)間;
(2)若媽媽在出發(fā)后25分鐘時(shí),剛好在湖光巖門口追上小明,求媽媽駕車的速度及CD所在直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,.一只蟬從點(diǎn)沿方向以的速度爬行,一只螳螂為了捕捉這只蟬,由點(diǎn)沿方向以的速度爬行,一段時(shí)間后,它們分別到達(dá)了點(diǎn),的位置.若此時(shí)的面積為,求它們爬行的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com