【題目】任何一個正整數(shù)n都可以進行這樣的分解:np×qp、q是正整數(shù),且pq).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定Fn)=.例如18=1×18=2×9=3×6,這時就有F(18)=.請解答下列問題:

(1)計算:F(24);

(2)n為正整數(shù)時,求證:Fn3+2n2+n)=

【答案】(1) ;(2) .

【解析】

(1)根據(jù)最佳分解的意義,把24分解成兩數(shù)的積,找出差的絕對值最小的兩數(shù),求比值即可;

(2)根據(jù)(1)的求法,確定差的絕對值最小的兩數(shù)的特點,然后根據(jù)要求變形即可.

(1)∵24=1×24=2×12=3×8=4×6,

其中46的差的絕對值最小,

∴F(24)=.

(2)∵n3+2n2+n=n(n+1)2,

其中n(n+1)(n+1)的差的絕對值最小,且(n+1)≤n(n+1),

∴F(n3+2n2+n)=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三條角平分線相交于點I,過點IDIIC,交AC于點D.

(1)如圖①,求證:∠AIB=ADI;

(2)如圖②,延長BI,交外角∠ACE的平分線于點F.

①判斷DICF的位置關系,并說明理由;

②若∠BAC=70°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點E,F(xiàn)為BE上一點,連接DF,過F作FG⊥DF交BC于點G,連接BD交FG于點H,若FD=FG,BF=3 ,BG=4,則GH的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著手機的普及,微信一種聊天軟件的興起,許多人抓住這種機會,做起了微商,很多農產品也改變了原來的銷售模式,實行了網上銷售,這不剛大學畢業(yè)的小明把自家的冬棗產品也放到了網上,他原計劃每天賣100斤冬棗,但由于種種原因,實際每天的銷售量與計劃量相比有出入,下表是某周的銷售情況超額記為正,不足記為負單位:斤;

星期

與計劃量的差值

(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣出 ______ 斤;

(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售 ______ 斤;

(3)本周實際銷售總量達到了計劃數(shù)量沒有?

(4)若冬季每斤按8元出售,每斤冬棗的運費平均3元,那么小明本周一共收入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點D為另一塊三角板DMN的直角頂點,DM、DN分別交ABAC于點E、F.則下列四個結論:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四邊形AEDFBC2.其中正確結論是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】·黃金周期間,武漢動物園在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))

日期

101

102

103

104

105

106

107

人數(shù)變化單位:萬人

+1.6

+0.8

+0.4

-0.4

-0.8

+0.2

-1.2

1)若930的游客人數(shù)記為,請用的代數(shù)式表示102的游客人數(shù)?

2)請判斷七天內游客人數(shù)最多的是哪天?請說明理由。

3)若930的游客人數(shù)為2萬人,門票每人10元。問黃金周期間武漢動物園門票收入是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程中變形正確的是(

3x+6=0變形為x+2=0;

2x+8=5-3x變形為x=3;

=4去分母,得3x+2x=24;

(x+2)-2(x-1)=0去括號,得x+2-2x-2=0.

A. ①③ B. ①②③ C. ①④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3 的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=2 DQ,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,邊長為2的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點,現(xiàn)將正方形OABC繞O點順時針旋轉,當A點第一次落在直線y=x上時停止旋轉,旋轉過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖).

(1)旋轉過程中,當MN和AC平行時,求正方形OABC旋轉的角度;
(2)試證明旋轉過程中,△MNO的邊MN上的高為定值;
(3)折△MBN的周長為p,在旋轉過程中,p值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,請給予證明,并求出p的值.

查看答案和解析>>

同步練習冊答案