【題目】(背景知識)數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|,線段AB的中點(diǎn)表示的數(shù)為.
(問題情境)如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣4,點(diǎn)B表示的數(shù)為16,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度向左勻速運(yùn)動.設(shè)運(yùn)動時間為t秒(t>0).
(綜合運(yùn)用)
(1)填空:
①A、B兩點(diǎn)間的距離AB= ,線段AB的中點(diǎn)表示的數(shù)為 ;
②當(dāng)t為 秒時,點(diǎn)P與點(diǎn)Q相遇.
(2)①用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ;點(diǎn)Q表示的數(shù)為 ;
②若將數(shù)軸翻折,使點(diǎn)A與數(shù)軸上表示6的點(diǎn)重合,則此時點(diǎn)B與數(shù)軸上表示數(shù) 的點(diǎn)重合.
(3)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
【答案】(1)①20,6;②4;(2)①﹣4+3t;16﹣2t;②﹣14;(3)線段MN的長度沒有發(fā)生變化,線段MN的長為10.
【解析】
(1)①根據(jù)兩點(diǎn)間的距離公式,中點(diǎn)坐標(biāo)公式即可得到結(jié)論;
②根據(jù)時間=路程和÷速度和,列出算式計算即可求解;
(2)①根據(jù)路程=速度×?xí)r間即可求解;
②先根據(jù)中點(diǎn)坐標(biāo)公式求得翻折點(diǎn),進(jìn)一步求得點(diǎn)B對應(yīng)的數(shù);
當(dāng)P、Q兩點(diǎn)相遇時,P、Q表示的數(shù)相等列方程得到t=2,于是得到當(dāng)t=2時,P、Q相遇,即可得到結(jié)論;
(3)由點(diǎn)M表示的數(shù)為=﹣4+t,點(diǎn)N表示的數(shù)為=6+t,
(1)①A、B兩點(diǎn)間的距離AB=16﹣(﹣4)=20,線段AB的中點(diǎn)表示的數(shù)為(16﹣4)÷2=6;
②20÷(3+2)=4(秒).
故當(dāng)t為4秒時,點(diǎn)P與點(diǎn)Q相遇.
(2)①用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為﹣4+3t;點(diǎn)Q表示的數(shù)為16﹣2t;②(﹣4+6)÷2=1,16﹣(16﹣1)×2=﹣14.
故此時點(diǎn)B與數(shù)軸上表示數(shù)﹣14的點(diǎn)重合.
(3)點(diǎn)M表示的數(shù)為=﹣4+t,點(diǎn)N表示的數(shù)為=6+t,MN=6+t﹣(﹣4+t)=10.
故線段MN的長度沒有發(fā)生變化,線段MN的長為10.
故答案為:20,6;4;﹣4+3t,16﹣2t;﹣14.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進(jìn)行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九年級1班同學(xué)積極響應(yīng)“陽光體育工程”的號召,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從長跑、籃球、鉛球、立定跳遠(yuǎn)中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練前后都進(jìn)行了測試. 現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時定點(diǎn)投籃測試成績整理后作出如下統(tǒng)計圖表.
項(xiàng)目選擇統(tǒng)計圖
訓(xùn)練后籃球定時定點(diǎn)投籃測試進(jìn)球統(tǒng)計表
進(jìn)球數(shù)(個) | 8 | 7 | 6 | 5 | 4 | 3 |
人數(shù) | 2 | 1 | 4 | 7 | 8 | 2 |
請你根據(jù)圖表中的信息回答下列問題:
(1)選擇長跑訓(xùn)練的人數(shù)占全班人數(shù)的百分比是___________,該班共有同學(xué)___________人;
(2)求訓(xùn)練后籃球定時定點(diǎn)投籃人均進(jìn)球數(shù);
(3)根據(jù)測試資料,訓(xùn)練后籃球定時定點(diǎn)投籃的人均進(jìn)球數(shù)比訓(xùn)練之前人均進(jìn)球數(shù)增加25%. 請求出參加訓(xùn)練之前的人均進(jìn)球數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為36cm,點(diǎn)O以6cm/s的速度從點(diǎn)B沿射線BC方向運(yùn)動,射線AO交直線DC于點(diǎn)E.設(shè)點(diǎn)O運(yùn)動的時間為t s.
⑴ 當(dāng)t=9時,DE的長為 cm;
⑵ 設(shè)DE=y,求y關(guān)于t的函數(shù)關(guān)系式;
⑶ 在線段BO上取點(diǎn)G,使得OC∶OG=4∶5.當(dāng)以OC為半徑的⊙O與直線AG相切時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A、B兩種機(jī)器人搬運(yùn)大米,A型機(jī)器人比B型機(jī)器人每小時多搬運(yùn)20袋大米,A型機(jī)器人搬運(yùn)700袋大米與B型機(jī)器人搬運(yùn)500袋大米所用時間相等.求A、B型機(jī)器人每小時分別搬運(yùn)多少袋大米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的垂直平分線MD交AC于點(diǎn)D,AB于M,以下結(jié)論:①△BCD是等腰三角形;②射線BD是△ACB的角平分線;③△BCD的周長C△BCD=AC+BC;④△ADM≌BCD.正確的有( )
A.①②③B.①②C.①③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東明縣是著名的莊子故里,縣政府在南華公園修建了莊子塑像,李明同學(xué)想測量一下莊子像的高度如圖,已知塑像底座AB高度是3m,從D點(diǎn)側(cè)得像頂端C點(diǎn)和底端B點(diǎn)的仰角分別是60°和45°,求塑像的高度BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠計劃每天生產(chǎn)x只鹽水鵝,下表記錄了工人們某周的實(shí)際產(chǎn)量,高于計劃產(chǎn)量記為正,低于計劃產(chǎn)量記為負(fù).
星期 | 一 | 二 | 三 | 四 | 五 |
實(shí)際產(chǎn)量 | +3 | +1 | -2 | +6 | -3 |
(1)用含x的代數(shù)式表示本周鹽水鵝產(chǎn)量的總數(shù),并化簡;
(2)工人每周工資根據(jù)產(chǎn)量計算,每生產(chǎn)一只鹽水鵝可得10元,若本周超額完成任務(wù),超過部分每只額外獎勵8元.當(dāng)x=100時,該廠工人們這一周的工資總額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com