【題目】如圖1,拋物線,經(jīng)過(guò)A(1,0)、B(7,0)兩點(diǎn),交y軸于D點(diǎn),以AB為邊在x軸上方作等邊△ABC.
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點(diǎn)M,是S△ABM=S△ABC?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,E是線段AC上的動(dòng)點(diǎn),F是線段BC上的動(dòng)點(diǎn),AF與BE相交于點(diǎn)P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說(shuō)明理由;
②若AF=BE,當(dāng)點(diǎn)E由A運(yùn)動(dòng)到C時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)(不需要寫(xiě)過(guò)程).
【答案】(1);(2)點(diǎn)M的坐標(biāo)為(9,4)或(﹣1,4);(3)①AF=BE,∠APB=120°;②或.
【解析】解:(1)根據(jù)題意,可設(shè)拋物線的解析式為y=ax2+bx+.
∵將點(diǎn)A、B的坐標(biāo)代入得: 解得:a=,b=﹣2,
∴拋物線的解析式為y=x2﹣2x+.
(2)存在點(diǎn)M,使得S△AMB=S△ABC.
理由:如圖所示:過(guò)點(diǎn)C作CK⊥x軸,垂足為K.
∵△ABC為等邊三角形,
∴AB=BC=AC=6,∠ACB=60°.
∵CK⊥AB,
∴KA=BK=3,∠ACK=30°.
∴CK=3.
∴S△ABC=ABCK=×6×3=9.
∴S△ABM=×=12.
設(shè)M(a,a2﹣2a+).
∴AB|yM|=12,即×6×(a2﹣2a+)=12.
解得=9, =﹣1.
∴M1(9,4),M2(﹣1,4).
(3)①結(jié)論:AF=BE,∠APB=120°.
理由:如圖所示;
∵△ABC為等邊三角形,
∴BC=AB,∠C=∠ABF.
∵在△BEC和△AFB中, ,
∴△BEC≌△AFB.
∴AF=BE,∠CBE=∠BAF.
∴∠FAB+∠ABP=∠ABP+∠CBE=∠ABC=60°.
∴∠APB=180°﹣∠PAB﹣∠ABP=180°﹣60°=120°.
②點(diǎn)P經(jīng)過(guò)的路徑長(zhǎng)為或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一張矩形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)B.C.D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H.
①△BCE≌△ACD;
②CF=CH;
③△CFH為等邊三角形;
④FH∥BD;
⑤AD與BE的夾角為60°,
以上結(jié)論正確的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(2,0),點(diǎn)B (0,1),過(guò)點(diǎn)A的直線l垂直于線段AB,點(diǎn)P是直線l上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點(diǎn)C落在點(diǎn)D處,若以A,D,P為頂點(diǎn)的三角形與△ABP相似,則所有滿足此條件的點(diǎn)P的坐標(biāo)為___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,高鐵列車座位后面的小桌板收起時(shí)可以近似地看作與地面垂直,展開(kāi)小桌板后,桌面會(huì)保持水平.如圖的實(shí)線是小桌板展開(kāi)后的示意圖,其中OB表示小桌面的寬度,BC表示小桌板的支架.連接OA,此時(shí)OA=75厘米,∠AOB=∠ACB=37°,且支架長(zhǎng)BC與桌面寬OB的長(zhǎng)度之和等于OA的長(zhǎng)度,求點(diǎn)B到AC的距離.(參考數(shù)據(jù): , , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)M、N分別是射線OA、OB上的動(dòng)點(diǎn),OP平分∠AOB,且OP=6,△PMN的周長(zhǎng)最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)M、N分別是射線OA、OB上的動(dòng)點(diǎn),OP平分∠AOB,且OP=6,△PMN的周長(zhǎng)最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從氣象臺(tái)獲悉“本市明天降水概率是80%”,對(duì)此信息,下面幾種說(shuō)法正確的是( )
A. 本市明天將有80%的地區(qū)降水 B. 本市明天將有80%的時(shí)間降水
C. 明天肯定下雨 D. 明天降水的可能性大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b滿足a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com