【題目】已知反比例函數(shù)的圖象的一支位于第一象限.
(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于軸對稱,若△OAB的面積為6,求m的值.
【答案】第三象限,m>7;m=13.
【解析】試題分析:(1)根據(jù)反比例函數(shù)的圖象是雙曲線.當(dāng)k>0時(shí),則圖象在一、三象限,且雙曲線是關(guān)于原點(diǎn)對稱的;
(2)由對稱性得到△OAC的面積為3.設(shè)A(x、),則利用三角形的面積公式得到關(guān)于m的方程,借助于方程來求m的值.
試題解析:(1)根據(jù)反比例函數(shù)的圖象關(guān)于原點(diǎn)對稱知,該函數(shù)圖象的另一支在第三象限,且m-7>0,則m>7;
(2)∵點(diǎn)B與點(diǎn)A關(guān)于x軸對稱,若△OAB的面積為6,
∴△OAC的面積為3.
設(shè)A(x, ),則
x=3,
解得m=13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班抽查了10名同學(xué)的語文成績,以80分為基準(zhǔn),超出的記為正數(shù),不足的記為負(fù)數(shù),記錄的結(jié)果如下:﹣3、+12、﹣10、+8、﹣7、﹣3、﹣8、+1、0、+10
(1)這10名同學(xué)的最高分是 分,最低分是 分
(2)求這10名同學(xué)的平均成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,a、b、c在數(shù)軸上的位置如圖.
(1)填空:a、b之間的距離為;b、c之間的距離為;a、c之間的距離為 .
(2)化簡:|a+1|﹣|c﹣b|+|b﹣1|.
(3)若a+b+c=0,且b與﹣1的距離和c與﹣1的距離相等,求﹣a2+2b﹣c﹣(a﹣4c﹣b)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( 。
A. a6÷a2=a3B. (﹣3a2)3=﹣27a6
C. a2+2a2=3a4D. (a+2b)2=a2+4b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點(diǎn)Q與點(diǎn)B在AC的同側(cè),且AQ⊥AC.
(1)如圖1,點(diǎn)Q不與點(diǎn)A重合,連結(jié)CQ交AB于點(diǎn)P.設(shè)AQ=x,AP=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)是否存在點(diǎn)Q,使△PAQ與△ABC相似,若存在,求AQ的長;若不存在,請說明理由;
(3)如圖2,過點(diǎn)B作BD⊥AQ,垂足為D.將以點(diǎn)Q為圓心,QD為半徑的圓記為⊙Q.若點(diǎn)C到⊙Q上點(diǎn)的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)c,b是最小的正整數(shù),且a、b滿足|a+2|+(c﹣7)2=0.
(1)a= , b= , c=;
(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù)表示的點(diǎn)重合;
(3)點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長度和4個(gè)單位長度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= , AC= , BC= . (用含t的代數(shù)式表示)
(4)請問:3BC﹣2AB的值是否隨著時(shí)間t的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=DC,AC=DB,AC與DB交于點(diǎn)M.過點(diǎn)C作CN∥BD,過點(diǎn)B作BN∥AC,CN與BN交于點(diǎn)N.
(1)求證:△ABC≌△DCB;
(2)求證:四邊形BNCM是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=120°.點(diǎn)O是BC的中點(diǎn),點(diǎn)D沿B→A→C方向從B運(yùn)動(dòng)到C.設(shè)點(diǎn)D經(jīng)過的路徑長為x,圖1中某條線段的長為y,若表示y與x的函數(shù)關(guān)系的大致圖象如圖2所示,則這條線段可能是圖1中的( )
A.BD B.AD C.OD D.CD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com