【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)

(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=   °;

(2)如圖②,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠BOE,求∠COD的度數(shù);

(3)如圖③,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

【答案】(1)20;(2)20 ;(3)COE﹣BOD=20°.

【解析】試題分析:(1)根據(jù)圖形得出∠COE=∠DOE-∠BOC,代入求出即可;(2)根據(jù)角平分線定義求出∠EOB=2∠BOC=140°,代入∠BOD=∠BOE-∠DOE,求出∠BOD,代入∠COD=∠BOC-∠BOD求出即可;(3)根據(jù)圖形得出∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,相減即可求出答案.

試題解析:

(1)如圖①,∠COE=∠DOE﹣∠BOC=90°﹣70°=20°;

(2)如圖②,∵OC平分∠EOB,∠BOC=70°,

∴∠EOB=2∠BOC=140°,

∵∠DOE=90°,

∴∠BOD=∠BOE﹣∠DOE=50°,

∵∠BOC=70°,

∴∠COD=∠BOC﹣∠BOD=20°;

(3)∠COE﹣∠BOD=20°,

理由是:如圖③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,

∴(∠COE+∠COD)﹣(∠BOD+∠COD)

=∠COE+∠COD﹣∠BOD﹣∠COD

=∠COE﹣∠BOD

=90°﹣70°

=20°,

∠COE﹣∠BOD=20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小芳騎自行車從家出發(fā)到野外郊游.從家出發(fā)0.5小時(shí)到達(dá)甲地,游玩一段時(shí)間后按原速前往乙地.小芳離家1小時(shí)20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時(shí),恰好經(jīng)過甲地.如圖是她們距乙地的路程y(km)與小芳離家x(h)的函數(shù)圖象.

(1)小芳騎車的速度為 km/h,點(diǎn)H的坐標(biāo)為

(2)小芳從家出發(fā)多少小時(shí)后被媽媽追上?此時(shí)距家的的路程多遠(yuǎn)?

(3)相遇后,媽媽載上小芳和自行車同時(shí)到達(dá)乙地(彼此交流時(shí)間忽略不計(jì)),求小芳比預(yù)計(jì)時(shí)間早幾分鐘到達(dá)乙地?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,AD⊥BC于點(diǎn)D,點(diǎn)E在AD上,且DE=DC.
(1)求證:△BDE≌△ADC;
(2)若BC=8.4,tanC= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B分別為數(shù)軸上的兩點(diǎn),點(diǎn)A表示的數(shù)是﹣30,點(diǎn)B表示的數(shù)是50.

(1)請寫出線段AB中點(diǎn)M表示的數(shù)是   

(2)現(xiàn)有一只螞蟻P從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左移動(dòng),同時(shí)另一只螞蟻Q恰好從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右移動(dòng),設(shè)兩只螞蟻在數(shù)軸上的點(diǎn)C相遇.

①求A、B兩點(diǎn)間的距離;

②求兩只螞蟻在數(shù)軸上的點(diǎn)C相遇時(shí)所用的時(shí)間;

③求點(diǎn)C對應(yīng)的數(shù)是多少?

(3)若螞蟻P從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí)另一只螞蟻恰好從A點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸也向左運(yùn)動(dòng),設(shè)兩只螞蟻在數(shù)軸上的D點(diǎn)相遇,求D點(diǎn)表示的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx+2(a≠0)圖象的頂點(diǎn)在第二象限,且過點(diǎn)(1,0),則a的取值范圍是;若a+b的值為非零整數(shù),則b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在青山區(qū)海綿城市工程中,某工程隊(duì)接受一段道路施工的任務(wù),計(jì)劃從201610月初至20179月底(12個(gè)月)完成施工3個(gè)月后,實(shí)行倒計(jì)時(shí),提高工作效率,剩余工程量與施工時(shí)間的關(guān)系如圖所示,那么按提高工作效率后的速度做完全部工程,則工期可縮短________個(gè)月.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(
A.a3a2=a6
B.(a23=a5
C.23=﹣6
D.20=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(原題)已知直線ABCD,點(diǎn)P為平行線AB,CD之間的一點(diǎn).如圖1,若∠ABP=50°,∠CDP=60°,BE平分ABP,DE平分∠CDP,∠BED的度數(shù)

(探究)如圖2,當(dāng)點(diǎn)P在直線AB的上方時(shí),若∠ABP=α,∠CDP=β,∠ABP和CDP的平分線交于點(diǎn)E1,∠ABE1∠CDE1的角平分線交于點(diǎn)E2,∠ABE2∠CDE2的角平分線交于點(diǎn)E3,…以此類推,求∠En的度數(shù).

(變式)如圖3,ABP的角平分線的反向延長線和CDP的補(bǔ)角的角平分線交于點(diǎn)E,試猜想P與E的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了考查一種零件的加工精度,從中抽出40只進(jìn)行檢測,其尺寸數(shù)據(jù)如下(單位:微米):

161,165,164,166,160,158,163,162,168,159,

147,165,167,151,164,159,152,159,149,172,

162,157,162,169,156,164,163,157,163,165,

173,159,157,169,165,154,153,163,168,169.

試列出樣本頻數(shù)及頻率分布表,繪制頻數(shù)分布直方圖.

查看答案和解析>>

同步練習(xí)冊答案