計算下列各圖中所示的線段的長度或正方形的面積.(注:下列各圖中的三角形均為直角三角形)

(1)A=________,(2)y=________,(3)B=________.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

學校圍墻邊有一個直角三角形的花圃(如圖1所示的Rt△ABC),其中斜邊AB借助圍墻,兩條直角邊AC和BC用鐵柵欄圍成,已知AB=10米,AC=8米.
(1)求這個直角三角形花圃的面積.
(2)現(xiàn)在要將這個直角三角形花圃擴充成等腰三角形,設計方案要求斜邊AB不變,只能延長兩條直角邊中的一條.圖2是已經(jīng)設計好的一種方案:延長BC到P,使PA=PB,把花圃擴充成等腰△PAB.設CP的長為x米,請你求出x的值,并計算△PAB的面積.
(3)請你仿照(2)中的方法,設計符合(2)中要求的方案,在下列各圖中
畫出擴充后的等腰三角形花圃△PAB的示意圖,并直接寫出△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,是某市公園周圍街巷的示意圖,A點表示1街與2巷的十字路口,B點表示3街與5巷的十字路口,如果用(1,2)→(2,2)→(3,2)→(3,3)→(3,4)→(3,5)表示由A點到B點的一條路徑,那么,你能同樣的方法寫出由A點到B點盡可能近的其他兩條路徑嗎?

(2)從正三角形、正四邊形、正五邊形、正六邊形、正八邊形、正十邊形、正十二邊形中任選兩種正多邊形鑲嵌,請全部寫出這兩種正多邊形.并從其中任選一種探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.
(3)如圖2所示,已知AB∥CD,分別探索下列四個圖形中∠P(均為小于平角的角)與∠A,∠C的關系,請你從所得的四個關系中任選一個加以說明.
(4)閱讀材料:多邊形上或內部的一點與多邊形各頂點的連線,將多邊形分割成若干個小三角形.如圖3給出了四邊形的具體分割方法,分別將四邊形分割成了2個、3個、4個小三角形.
請你按照上述方法將圖4中的六邊形進行分割,并寫出得到的小三角形的個數(shù)以及求出每個圖形中的六邊形的內角和.試把這一結論推廣至n邊形,并推導出n邊形內角和的計算公式.

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 華師大七年級版 2009-2010學年 第19~26期 總第175~182期 華師大版 題型:044

小明對本班同學上學的交通方式進行了一次調查,他根據(jù)收集的數(shù)據(jù),繪制了1和圖2所示的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答下列問題:

(1)計算本班騎自行車上學的人數(shù),補全圖1的統(tǒng)計圖;

(2)在圖2中,求出“乘公共汽車”部分所對應的圓心角的度數(shù),補全圖2的統(tǒng)計圖(要求寫出各部分所占的百分比);

(3)觀察圖1和圖2,你能得出哪些結論?(只要求寫出一條)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

學校圍墻邊有一個直角三角形的花圃(如圖1所示的Rt△ABC),其中斜邊AB借助圍墻,兩條直角邊AC和BC用鐵柵欄圍成,已知AB=10米,AC=8米.
(1)求這個直角三角形花圃的面積.
(2)現(xiàn)在要將這個直角三角形花圃擴充成等腰三角形,設計方案要求斜邊AB不變,只能延長兩條直角邊中的一條.圖2是已經(jīng)設計好的一種方案:延長BC到P,使PA=PB,把花圃擴充成等腰△PAB.設CP的長為x米,請你求出x的值,并計算△PAB的面積.
(3)請你仿照(2)中的方法,設計符合(2)中要求的方案,在下列各圖中
畫出擴充后的等腰三角形花圃△PAB的示意圖,并直接寫出△PAB的面積.

查看答案和解析>>

同步練習冊答案