如圖,矩形紙片ABCD中,AB=數(shù)學(xué)公式,BC=數(shù)學(xué)公式.第一次將紙片折疊,使點(diǎn)B與點(diǎn)D重合,折痕與BD交于點(diǎn)O1;O1D的中點(diǎn)為D1,第二次將紙片折疊使點(diǎn)B與點(diǎn)D1重合,折痕與BD交于點(diǎn)O2;設(shè)O2D1的中點(diǎn)為D2,第三次將紙片折疊使點(diǎn)B與點(diǎn)D2重合,折痕與BD交于點(diǎn)O3,….按上述方法折疊,第n次折疊后的折痕與BD交于點(diǎn)On,則BO1=________,BOn=________.

2    
分析:(1)結(jié)合圖形和已知條件,可以推出BD的長度,根據(jù)軸對(duì)稱的性質(zhì),即可得出O1點(diǎn)為BD的中點(diǎn),很容易就可推出O1B=2;
(2)依據(jù)第二次將紙片折疊使點(diǎn)B與點(diǎn)D1重合,折痕與BD交于點(diǎn)O2,O1D的中點(diǎn)為D1,可以推出O2D1=BO2==;以此類推,即可推出:BOn=
解答:∵矩形紙片ABCD中,,
∴BD=4,
(1)當(dāng)n=1時(shí),
∵第一次將紙片折疊,使點(diǎn)B與點(diǎn)D重合,折痕與BD交于點(diǎn)O1
∴O1D=O1B=2,
∴BO1=2=;
(2)當(dāng)n=2時(shí),
∵第二次將紙片折疊使點(diǎn)B與點(diǎn)D1重合,折痕與BD交于點(diǎn)O2,O1D的中點(diǎn)為D1
∴O2D1=BO2===,
∵設(shè)O2D1的中點(diǎn)為D2,第三次將紙片折疊使點(diǎn)B與點(diǎn)D2重合,折痕與BD交于點(diǎn)O3,
∴O3D2=O3B==,
∴以此類推,當(dāng)n次折疊后,BOn=
點(diǎn)評(píng):本題考查圖形的翻折變換,解直角三角形的有關(guān)知識(shí),解題過程中應(yīng)注意折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì)推出結(jié)論
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對(duì)角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對(duì)角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(30):25.3 軸對(duì)稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽)如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開,解答以下問題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊(cè)答案