【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y= x2+k與扇形OAB的邊界總有兩個公共點(diǎn),則實(shí)數(shù)k的取值范圍是 .
【答案】﹣2<k<
【解析】解:由圖可知,∠AOB=45°, ∴直線OA的解析式為y=x,
聯(lián)立 消掉y得,
x2﹣2x+2k=0,
△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,
即k= 時,拋物線與OA有一個交點(diǎn),
此交點(diǎn)的橫坐標(biāo)為1,
∵點(diǎn)B的坐標(biāo)為(2,0),
∴OA=2,
∴點(diǎn)A的坐標(biāo)為( , ),
∴交點(diǎn)在線段AO上;
當(dāng)拋物線經(jīng)過點(diǎn)B(2,0)時, ×4+k=0,
解得k=﹣2,
∴要使拋物線y= x2+k與扇形OAB的邊界總有兩個公共點(diǎn),實(shí)數(shù)k的取值范圍是﹣2<k< .
故答案為:﹣2<k< .
根據(jù)∠AOB=45°求出直線OA的解析式,然后與拋物線解析式聯(lián)立求出有一個公共點(diǎn)時的k值,即為一個交點(diǎn)時的最大值,再求出拋物線經(jīng)過點(diǎn)B時的k的值,即為一個交點(diǎn)時的最小值,然后寫出k的取值范圍即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是初中數(shù)學(xué)的一個重要工具.利用數(shù)軸可以將數(shù)與形完美的結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上A點(diǎn)、B點(diǎn)表示的數(shù)為a、b,則A,B兩點(diǎn)之間的距離AB=|a﹣b|;線段AB的中點(diǎn)M表示的數(shù)為,請借用數(shù)軸和以上規(guī)律解決下列問題:
如圖,已知數(shù)軸上A、B兩點(diǎn)所表示的數(shù)分別為﹣4和16.
(1)線段AB等于多少;線段AB的中點(diǎn)所表示的數(shù)為多少.
(2)若數(shù)軸上有一點(diǎn)C,與點(diǎn)B相距4個單位長度,分別求AC、BC中點(diǎn)所表示的數(shù).
(3)在(2)的條件下,點(diǎn)M、N是數(shù)軸上的動點(diǎn),點(diǎn)M從AC中點(diǎn)出發(fā),以每秒1個單位長度的速度向右運(yùn)動.點(diǎn)N從BC中點(diǎn)出發(fā),以每秒1個單位長度的速度向左運(yùn)動.設(shè)點(diǎn)M、N同時出發(fā),運(yùn)動時間為x秒,當(dāng)點(diǎn)M,N兩點(diǎn)間的距離為3個單位長度時,求x等于多少,此時點(diǎn)M所表示的數(shù)為多少(請直接在橫線上寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“國慶節(jié)大酬賓”,某商場設(shè)計(jì)的促銷活動如下:在一個不透明的箱子里放有3個質(zhì)地相同的小球,并在球上分別標(biāo)有“5元”、“10元”和“15元”的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回).商場根據(jù)兩個小球所標(biāo)金額和返還相等價(jià)格的購物券,購物券可以在本商場消費(fèi),某顧客剛好消費(fèi)300元.
(1)該顧客最多可得到元購物券;
(2)請你用畫樹狀圖和列表的方法,求出該顧客所得購物券的金額不低于25元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀)數(shù)軸上點(diǎn)A、B表示的數(shù)分別是a、b,若a>b,則AB=a﹣b.
例如,若數(shù)軸上點(diǎn)A、B表示的兩個數(shù)分別為﹣2000和+18,
則AB=18﹣(﹣2000)=18+2000=2018
(應(yīng)用)若數(shù)軸上點(diǎn)A、B表示的兩個數(shù)分別為x和﹣1,且x>﹣1,則AB= (用含x的代數(shù)式表示);
(拓展)如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2a,點(diǎn)B表示的數(shù)為﹣a,點(diǎn)C表示的數(shù)為﹣2,且AB=BC.
(1)求a的值;
(2)以BC為邊作等邊三角形BCD,并將共向右滾動1周得到新的等邊三角形BCD,依次繼續(xù)滾動…….若滾動第n周后,等邊三角形BCD的頂點(diǎn)C表示的數(shù)是2014,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若中,,高AD=12cm,則BC的長為( )
A. 14 cm B. 4 cm C. 14cm或4 cm D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y= x與雙曲線y= (k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣4,﹣2),C為雙曲線y= (k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為( )
A.(2,4)
B.(1,8)
C.(2,4)或(1,8)
D.(2,4)或(8,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,放在直角坐標(biāo)系中的正方形ABCD邊長為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個數(shù)字中一個),每個頂點(diǎn)朝上的機(jī)會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD 面上的概率為 ;若存在,指出其中的一種平移方式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com